首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The main goal of the study presented in the paper was an experimental comparison of the underground lignite and hard coal seams air gasification simulated in the ex situ reactor. In the study lignite and hard coal were gasified with oxygen, air and oxygen enriched air as gasification agents in the 50- and 30-h experiments, respectively, with an intrinsic coal and strata moisture content as a steam source. Application of air as a sole gasification agent was problematic for a resulting rapid decrease in temperatures, deterioration of gas quality and, finally, cessation of gasification reactions. Use of oxygen/air mixture of an optimum ratio led to valuable gas production. In lignite seam gasification with oxygen/air (of 4:2 volume ratio) the average H2 and CO contents in product gas were 23.1 vol.% and 6.3 vol.%, respectively, and the calorific value was 4.18 MJ/m3, whereas in hard coal gasification with the oxygen/air ratio (of 2:3 volume ratio) the average H2 and CO contents in produced gas were 18.7 vol.% and 17.3 vol.%, respectively, and product gas calorific value equaled 5.74 MJ/m3.  相似文献   

2.
The performance of a small-scale two-staged gasification system is reported. In this system wood chips are gasified with a fixed bed gasifier and then tar in the produced gas is reformed in a non-catalytic reformer, finally the production gas is used to generate electricity. In this system, the gasifying agents are high temperature air and steam supplied into the gasifier and the reformer. This paper reports on optimum gasification air ratio (defined as the ratio of the oxygen mole supplied into the gasifier to the oxygen mole required for complete combustion of biomass), reforming air ratio (defined as the ratio of the oxygen mole supplied in the reformer to the oxygen mole required for the complete combustion of biomass) and steam ratio (defined as the ratio of the steam mole supplied into the gasifier to the carbon mole in biomass supplied into the gasifier) for producing required gas supplied into a dual-fueled diesel engine. The results showed that, under optimum conditions, the higher heating value of the reformed gas was 3.9 MJ/m3N; the cold gas efficiency (defined as the ratio of HHV reformed gas × reformed gas flow rate to HHV biomass × biomass feed rate) of the gasification system was 66%, and the gross thermal efficiency of the overall system was 27%.  相似文献   

3.
废菌棒是食用菌生产过程中产生的残余废弃物,其再利用对于资源节约与环境保护具有重要意义。本文采用循环流化床气化炉对废菌棒进行了气化试验,分别研究空气当量比、水蒸气配比对气化炉运行温度、气化燃气组分与热值、焦油含量、气化效率及碳转化率等气化特性的影响规律。结果表明:空气当量比由0.20增大至0.35时,循环流化床运行温度与碳转化率升高,气化燃气中的CO2体积分数增大,CO与焦油含量及气化燃气热值下降,气化效率呈现先增大后减小的趋势;空气当量比为0.26时气化效率达到最大74.86%,此时燃气热值为5.59MJ/m3。以空气为主气化介质,采用水蒸气作为辅助气化剂,可以改善气化燃气品质,提升气化效率。当空气当量比为0.26、水蒸气配比为0.2时,废菌棒具有较好的空气-水蒸气气化特性,燃气热值与气化效率分别达到最大值6.14MJ/m3与83.73%。  相似文献   

4.
The main objective of this study was the assessment of the feasibility of applying the underground hard coal gasification in the production of a hydrogen-rich gas. In the course of the experiment the so-called two-stage gasification process in which oxygen and steam were supplied to the reaction zone separately in alternate stages was investigated. For this purpose a special surface reactor has been constructed, in which the underground conditions were to be imitated both in respect to the coal seam and the surrounding rock layers. The surface simulation of the underground gasification was carried out on extra large coal samples, which allowed the recreation of near real underground conditions. In the reactor an experiment lasting almost 7 days has been performed, with the average hourly gas yields of 7.8 m3/h and 9.2 m3/h for the oxygen and the steam gasification stages, respectively. The average hydrogen concentration during the oxygen stage (heating up) was 15.28% with the maximum of 54.4%. The average hydrogen concentration during the steam stage was 53.77% with the maximum of 62.90%. Thus the feasibility of hydrogen-rich gas production in the process of underground gasification of hard coal has been demonstrated. During the course of the surface experiment an original and unprecedented database of temperature profiles has been acquired which now constitutes an invaluable source of thermodynamic information for the prospective underground gasification activities.  相似文献   

5.
In an experimental gasifier with 3 kg/h of conversion capacity, studies were made in order to get experimental data on the production of combustible gas from coal by a cyclic gasification process. The material and energy balances and the composition data are presented for 8 runs gasifying coke or coal. An acceptable reproducibility of data was observed. It is possible to obtain a fuel gas with a high calorific value of 10 MJ/m3 using air.  相似文献   

6.
This paper describes tar destruction and coke (or soot) formation of biomass in three different conversion processes: pyrolysis (in a pure nitrogen stream), steam gasification (in a mixture stream of steam and nitrogen), and partial oxidation (in a mixture stream of oxygen and nitrogen), over a wide temperature range from 600 to 1400 °C. A woody waste, hinoki cypress sawdust (HCS), was used as a feedstock, and an entrained drop-tube furnace (DTF) was applied to all experimental tests. It is found that raising the temperature remarkably decreases tar evolution. Steam and oxygen also have a positive effect on tar destruction. Benzene and toluene are the most difficult condensable tar species to destroy. The achievement of their complete destruction in the product gas requires extremely high temperatures above 1200 °C, regardless of the gasifying agents. The coke deposits from 900 °C and reaches a maximum formation at 1000 or 1100 °C. The results obtained in this study suggest that competition occurs between the secondary decomposition of hydrocarbon species and gasification reactions of the produced char and/or coke with gasifying agents in the temperature range of 900-1100 °C.  相似文献   

7.
以O2/水蒸气作为气化剂,对褐煤半焦气化过程进行实验研究.结果表明,随着气化温度的提高,在生成的煤气组成中CO和H2含量增加,而CO2和CH4的含量减少,煤气热值和合成气产率均增加;在温度一定时,随着氧气流量的增加,煤气中CO含量和H2含量先增加然后逐渐减少,CO2含量增加,CH4含量减少,煤气热值和合成气产率均存在一个最大值.  相似文献   

8.
Results are presented for gasification of coal and char by means of air or air-steam mixtures in fluidised bed reactors of three different volumes. Two sizes of coal feedstock particles, 0.5-1.0 mm and 1.0-1.5 mm, and one size of char particles, 0.5-1.5 mm, were used. The calorific value of generated gas and the carbon conversion are presented as a function of particle residence time. For coal gasification higher carbon conversion has been obtained at the same particle residence time than for char gasification. For the steam gasification, a lower gas heating value of about 4 MJ/m3 (S.T.P.) was obtained.  相似文献   

9.
The thermal treatment of waste-tyre by co-gasification with lignite was investigated on a commercial scale during the Lurgi gasification process. The experiments proved that this material can be treated in a mixture with lignite in the process of oxygen–steam pressure co-gasification in a moving bed, because a waste-tyre admixture improves the net calorific value of the raw gas obtained by 3% in comparison with that from the gasification of lignite alone. Further, it was found that the H2S and CH3SH contents in the raw gas are lower in the case of co-gasification than those from the gasification of lignite alone. Considering the very low reactivity of the char from waste-tyre and the resultant unburned carbon in the ash, the optimal content of the waste-tyre admixture in the gasified feed should not exceed 10 wt.%, whereas short-term increases of up to 20 wt.% will not cause any technological problems or significant economic losses.  相似文献   

10.
Pressurized gas produced from biomass is a renewable resource that is attracting a great deal of attention due to its wide range of industrial applications, such as the production of hydrogen, chemicals or high grade fuels. Therefore, the Vienna University of Technology in cooperation with BioEnergy 2020+ is operating a bubbling pressurized gasification plant. The pressurized research unit (PRU) is able to perform the gasification of wood chips, wood pellets, coal and other solid fuels with gasification agents air, steam, oxygen or carbon dioxide. This paper gives the results of parameter variation at this plant with regard to the producer gas composition. The feedstock was wood pellets and as bed material olivine was used with an average particle size of 0.5 mm. The parameters varied were temperature (720-900 °C), pressure (1-5 bar), air ratio (0.2-0.4), gasification agent (air, steam, oxygen), biomass feed input (4.5-8 kg/h) and the fluidization conditions of the reactor fluidized bed (fluidization number (3-7)).  相似文献   

11.
Production of hydrogen and syngas via gasification of the corn and wheat dry distiller grains (DDGS) with oxygen in a continuous downflow fixed bed micro reactor are studied in this paper. A series of experiments have been performed to investigate the effects of reaction time (15–45 min), reactor temperature (700–900 °C) and oxygen to nitrogen ratio (0.08–0.2 vol./vol.) on product gas composition, gas yield, low heating value (LHV) and carbon conversion efficiency. Over the ranges of the experimental conditions used, the results obtained seemed to suggest that for both biomasses the operating conditions were optimized for a gasification temperature around 900 °C, an oxygen to nitrogen ratio of 0.08 and a reaction time of 30 min, because a gas richer in hydrogen and carbon monoxide and poorer in carbon dioxide and hydrocarbons. The results showed that the product gas of corn DDGS gasification has higher H2 and CO concentrations (11 and 56.5%) than that of wheat DDGS gasification (10.5 and 51.5%). In addition gasification of corn DDGS resulted to higher gas yield (0.42 m3/kg), LHV (10.65 MJ/m3) and carbon conversion efficiency (44.2%).  相似文献   

12.
John S. Dennis  Stuart A. Scott 《Fuel》2010,89(7):1623-224
Chemical looping combustion (CLC) has the inherent property of separating CO2 from flue gases. This paper is concerned with the application of chemical looping to the combustion of a solid fossil fuel (a lignite and its char) in a technique whereby the fuel is gasified in situ using CO2 in the presence of a batch of supported copper oxide (the “oxygen carrier”) in a single reactor. As the metal oxide becomes depleted, the feed of fuel is discontinued, the inventory of fuel is reduced by further gasification and then the contents are re-oxidised by the admission of air to the reactor, to begin the cycle again. The choice of oxides is restricted because it requires an oxide which is exothermic during reduction to balance the endothermic gasification reactions. Copper has such oxides, but a key question is whether or not it can withstand temperatures at which gasification rates are significant (∼1173 K), particularly from the point of view of avoiding sintering and deactivation of the carrier in its reduced form. It was found that an impregnated carrier, made by impregnating a θ-alumina catalyst support (BET area 157 m2/g) with a saturated solution of copper and aluminium nitrates, acted as a durable carrier over 20 cycles of reduction and oxidation, using both Hambach lignite coal, and its char, and with air as the oxidising agent. During the course of the experiments, the BET surface area of the support fell from ∼60 m2/g, just after preparation, to around 6 m2/g after 20 cycles. However, this fall did not appear to affect the overall capacity of the oxygen carrier to react with fuels and its effect on the kinetics of the reaction with CO did not influence the outcome of the experiments, since the overall performance of the looping scheme is dominated by the much slower kinetics of the gasification reaction. The apparent kinetics of the gasification are faster in the presence of the looping agent: this is because the bulk concentration of CO in the presence of the looping agent is lower, and partly because the destruction of CO in the vicinity of a gasifying particle enhances the rate of removal of CO by mass transfer (and increases the local concentration of CO2). There was little evidence to suggest a direct reaction between carbonaceous and carrier solids, other than via a gaseous intermediate. However, the observation of finite rates of conversion in a bed of active carrier, fluidised by nitrogen, is a scientific curiosity, which we have not been able to explain satisfactorily. At 1173 K, as used here, rates of gasification of Hambach lignite, and its char, are significant. The CuO in the carrier decomposes at 1173 K to produce gas-phase O2 and Cu2O: both can react with CO produced by gasification, whilst the O2 can react directly with the char.  相似文献   

13.
以氧气-水蒸气-二氧化碳作为气化介质,松木屑为原料,采用Aspen Plus软件,结合自建模型,对生物质气化进行了模拟研究。首先,利用文献中的数据对模型进行了验证,模拟结果与文献中的数据基本吻合,证明了该模型的正确性。接着,考察了气化温度、氧气用量(cER)、水蒸气与生物质质量比(mS/mB)、二氧化碳与生物质质量比(mCO2/mB)对产气组成、气体热值、气体产率、气化效率和产气氢碳比(nH2/nCO)的影响。结果表明:在850℃、101.325kPa、cER=0.2、mS/mB=1、mCO2/mB=0.6的条件下,气化产物特性为气体热值7.45MJ/m3、气体产率1.78m3/kg、气化效率73.3%、氢碳比1.79。适当提高气化温度有利于气化。cER的增大使气体热值、产率和气化效率均迅速降低;但对产气中氢碳比的影响较小。此外,气化剂中水蒸气的适量增加有利于氢气的产生并能明显提高其体积分数,二氧化碳的适量增加有利于一氧化碳的产生并能在一定程度上提高其体积分数,二者均能有效调节产气的氢碳比。  相似文献   

14.
Co-gasification of meat and bone meal with coal in a fluidised bed reactor   总被引:1,自引:0,他引:1  
E. Cascarosa  L. Gasco  G. Gea  J.L. Sánchez  J. Arauzo 《Fuel》2011,90(8):2798-2807
After the Bovine Spongiform Encephalopathy illness appeared, the meat and bone meat (MBM) produced from animal residues became an important waste. In spite of being a possible fuel due to its heating value (around 21.4 MJ/kg), an important fraction of the meat and bone meal is being sent to landfills. The aim of this work is to evaluate the co-gasification of low percentages of meat and bone meal with coal in a fluidised bed reactor as a potential waste management alternative. The effect of the bed temperature (800-900 °C), the equivalence ratio (0.25-0.35) and the percentage of MBM in the solid fed (0-1 wt.%) on the co-gasification product yields and properties is evaluated. The results show the addition of 1 wt.% of MBM in a coal gasification process increases the gas and the liquid yield and decreases the solid yield at 900 °C and 0.35 of temperature and equivalence ratio operational conditions. At operational conditions of 900 °C and equivalence ratio of 0.35, the specific yield to gas (ygas) increases from 3.18 m3(STP)/kg to 4.47 m3(STP)/kg. The gas energy yield decreased 24.1% and the lower heating value of the gas decreases from 3.36 MJ/m3(STP) to 2.16 MJ/m3(STP). The concentration of the main gas components (H2, CO and CO2) hardly varies with the addition of MBM, however the light hydrocarbon concentrations decrease and the H2S concentration increases at the higher temperature (900 °C).  相似文献   

15.
《中国化学工程学报》2014,22(11-12):1208-1214
The chemical looping gasification uses an oxygen carrier for solid fuel gasification by supplying insufficient lattice oxygen. The effect of gasifying medium on the coal chemical looping gasification with CaSO4 as oxygen carrier is investigated in this paper. The thermodynamical analysis indicates that the addition of steam and CO2 into the system can reduce the reaction temperature, at which the concentration of syngas reaches its maximum value. Experimental result in thermogravimetric analyzer and a fixed-bed reactor shows that the mixture sample goes through three stages, drying stage, pyrolysis stage and chemical looping gasification stage, with the temperature for three different gaseous media. The peak fitting and isoconversional methods are used to determine the reaction mechanism of the complex reactions in the chemical looping gasification process. It demonstrates that the gasifying medium (steam or CO2) boosts the chemical looping process by reducing the activation energy in the overall reaction and gasification reactions of coal char. However, the mechanism using steam as the gasifying medium differs from that using CO2. With steam as the gasifying medium, parallel reactions occur in the beginning stage, followed by a limiting stage shifting from a kinetic to a diffusion regime. It is opposite to the reaction mechanism with CO2 as the gasifying medium.  相似文献   

16.
The oxyfuel technology offers the possibility for CO2 sequestration from coal fired power plants. One drawback is the need for a high external flue gas recirculation to avoid inadmissible high flame temperatures. The concept of controlled staging with non-stoichiometric burners (CSNB) allows a significant reduction of the commonly proposed flue gas recirculation rate while fulfilling all requirements on temperature limitations. The concept aims at a more efficient oxyfuel process with a higher degree of freedom for heat-flux adjustments suitable for a new generation of oxyfuel boilers. The steam generator size could be reduced and in this way a more cost effective steam generator concept is possible. Additionally the energy demand for the flue gas recirculation is lowered.This paper presents the experimental investigations of non-stoichiometric oxycoal flames. Temperature and gas profiles were taken to analyze the combustion behavior of coal with high oxygen concentrations in the oxidizer under oxygen deficiency and accordingly oxygen excess. In addition an optical flame monitoring system allowed a comparison of ignition, flame shape and stability. In the test rig lignite was burned under different stoichiometries ranging from 0.5 to 2.5 and different oxygen concentrations in the oxidant ranging from 30 to 40 vol.%. The thermal input of the burner was 70 kW at a total thermal input of 140 kW and a dry flue gas recirculation was used. The results were compared to a conventional air-blown combustion and showed that similar temperature ranges can be reached even with oxygen concentrations in the oxidizer as high as 40 vol.%.  相似文献   

17.
Performance of an entrained-flow gasification technology of pulverized coal in pilot-scale plant is introduced. The gasifier was operated for a throughput of 30–45 t coal per day at pressures of 1–3 MPa. Dense-phase pneumatic conveying was employed for coal's feeding to the gasifier using nitrogen and carbon dioxide as carrier gas, respectively. Effects of the operating conditions including oxygen/carbon ratio and steam/carbon ratio on gasification results were investigated, and the concentration of (CO + H2) in gaseous products reached up to about 97% (vol., dry basis) when CO2 was employed as carrier gas. Moreover, performances of some important instruments in the conveying system of pulverized coal, such as the level indicator and the solid mass flow meter, were also investigated. The typical operating results in this plant such as (CO + H2) concentration, oxygen consumption, coal consumption, carbon conversion and cold gas efficiency were almost as good as those of some well-known dry-fed entrained-flow coal gasification plants.  相似文献   

18.
The purpose of this study was to investigate the gasification kinetics of biomass char, such as the wood portion of Japanese cedar char (JC), Japanese cedar bark char (JB), a mixture of hardwood char (MH) and Japanese lawngrass char (JL), each of which was obtained as a by-product of gasification in an entrained-flow type gasifier with steam and oxygen at 900-1000 °C. Biomass char was gasified in a drop tube furnace (DTF), in which gasification conditions such as temperature (Tg), gasifying agent (CO2 or H2O), and its partial pressure (Pg) were controlled over a wide range, with accompanying measurement of gasification properties such as gasification reaction ratio (X), gasification reaction rate (Rg), change of particle size and change of surface area. Surfaces were also observed with a scanning electric microscope (SEM). By analyzing various relationships, we concluded that the random pore model was the most suitable for the biomass char gasification reaction because of surface porosity, constant particle size and specific surface area profile, as well as the coincidence of Rg, as experimentally obtained from Arrhenius expression, and the value is calculated using the random pore model. The order of Rg was from 10−2 to 10−1 s−1, when Tg = 1000 °C and Pg = 0.05 MPa, and was proportional to the power of Pg in the range of 0.2-0.22 regardless of gasifying agent. Reactivity order was MH > JC > (JB, JL) and was roughly dependent on the concentration of alkali metals in biomass feedstock ash and the O/C (the molar ratio of oxygen to carbon) in biomass char.  相似文献   

19.
C.G. Soni  A.K. Dalai  T. Pugsley 《Fuel》2009,88(5):920-925
Gasification of meat and bone meal followed by thermal cracking of tar was carried out at atmospheric pressure using a two-stage fixed bed reaction system in series. The first stage was used for the gasification and the second stage was used for thermal cracking of tar. In this work, the effects of temperature (650-850 °C) of both stages, equivalence ratio (actual O2 supply/stoichiometric O2 required for complete combustion) (0.15-0.3) and the second stage packed bed height (40-100 mm) on the product (char, tar and gas) yield and gas (H2, CO, CO2, CH4, C2H4, C2H6, C3H6, C3H8) composition were studied. It was observed that the two-stage process increased hydrogen production from 7.3 to 22.3 vol.% (N2 free basis) and gas yield from 30.8 to 54.6 wt.% compared to single stage. Temperature and equivalence ratio had significant effects on the hydrogen production and product distribution. It was observed that higher gasification (850 °C) and cracking (850 °C) reaction temperatures were favorable for higher gas yield of 52.2 wt.% at packed bed height of 60 mm and equivalence ratio of 0.2. The residence time of tar and product gases was varied by varying the packed bed height of second stage. The tar yield decreased from 18.6 wt.% to 14.2 wt.% and that of gas increased from 50.6 wt.% to 54.6 wt.% by changing the packed bed height of second stage from 40 to 100 mm while the gross heating value (GHV) of the product gas remained almost constant (16.2-16.5 MJ/m3).  相似文献   

20.
Low Btu gas has been produced by gasifying coal in a spouted bed reactor. Coal of size 0.8-3.6 mm is fed continuously to a 0.15 m diameter spouted bed of inerts and gasified using mixtures of steam and air. Tests of the process with Western Canadian coals of free swelling index 0, 4 and 7 are reported. Gases of heating value to 3.61 MJ/m3 were produced at coal throughputs of 0.188 kg/m2s with the reactor operating at atmospheric pressure and temperatures to 930°C. Characteristics of the spouted bed gasifier are presented and results compared to commercial moving and fluidized bed systems. A simple mathematical model based on the two-region spouted bed model of Mathur and Lim is used to predict the effect on steam utilization of bed composition, bed height and diameter, and particle size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号