首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Char-CO2 gasification reactions in the presence of CO and char-steam gasification reactions in the presence of H2 were studied at the atmospheric condition using a thermogravimetric apparatus (TGA) at various reactant partial pressures and within a temperature range of 1123 K-1223 K. The char was prepared from a lignite coal. The partial pressure of H2 and CO varied from 0.05 to 0.3 atm. The experimental results showed that Langmuir-Hinshelwood (L-H) kinetic equation was applicable to describe the inhibition effects of CO and H2. The kinetic parameters in L-H equations were obtained. Interactions of char gasification by steam and CO2 in the presence of H2 and CO were discussed. It was found that the kinetic parameters determined from pure or binary gas mixtures can be used to predict multi-component gasification rates. The results confirmed that the char-steam and char-CO2 reactions proceed on separate active sites rather than common active sites.  相似文献   

2.
The photocatalytic transformation of imazamox, a herbicide of imidazolinone family, is investigated in aqueous solution containing titanium dioxide, hydrogen peroxide or the combination of TiO2/H2O2 under simulated sunlight irradiation. The effect of parameters such as the amount of catalysts, the concentration of herbicide, and the pH were investigated by measurement of the rate constant of degradation. Experimental data obtained under different conditions describe the dependency of degradation rate on the above mentioned parameters. Consequently, kinetic parameters were experimentally determined and a pseudo-first-order kinetic was observed. Mulliken charge distributions calculated by the DFT method B3LYP/6–31+G(d) level of theory for key cationic, anionic and neutral structures of imazamox give interpretation for the dependency of photodegradation rate constant on pH. The degradation rate constants were always higher for the heterogeneous catalysis in reactions (TiO2/UV, TiO2/UV/H2O2) compared to the homogeneous systems (UV alone, H2O2/UV). In parallel, five photoproducts could be tentatively identified using Electrospray ionization Fourier transform ion cyclotron resonance mass spectroscopy based on precise chemical formula assignments.  相似文献   

3.
Jacob Brix 《Fuel》2011,90(6):2224-2239
The aim of this investigation has been to model combustion under suspension fired conditions in O2/N2 and O2/CO2 mixtures. Experiments used for model validation have been carried out in an electrically heated Entrained Flow Reactor (EFR) at temperatures between 1173 K and 1673 K with inlet O2 concentrations between 5 and 28 vol.%. The COal COmbustion MOdel, COCOMO, includes the three char morphologies: cenospheric char, network char and dense char each divided between six discrete particle sizes. Both combustion and gasification with CO2 are accounted for and reaction rates include thermal char deactivation, which was found to be important for combustion at high reactor temperatures and high O2 concentrations. COCOMO show in general good agreement with experimental char conversion profiles at conditions covering zone I-III. From the experimental profiles no effect of CO2 gasification on char conversion has been found. COCOMO does however suggest that CO2 gasification in oxy-fuel combustion at low O2 concentrations can account for as much as 70% of the overall char consumption rate during combustion in zone III.  相似文献   

4.
Jacob Brix 《Fuel》2010,89(11):3373-4289
The aim of the present investigation is to examine differences between O2/N2 and O2/CO2 atmospheres during devolatilization and char conversion of a bituminous coal at conditions covering temperatures between 1173 K and 1673 K and inlet oxygen concentrations between 5 and 28 vol.%. The experiments have been carried out in an electrically heated entrained flow reactor that is designed to simulate the conditions in a suspension fired boiler. Coal devolatilized in N2 and CO2 atmospheres provided similar results regarding char morphology, char N2-BET surface area and volatile yield. This strongly indicates that a shift from air to oxy-fuel combustion does not influence the devolatilization process significantly. Char combustion experiments yielded similar char conversion profiles when N2 was replaced with CO2 under conditions where combustion was primarily controlled by chemical kinetics. When char was burned at 1573 K and 1673 K a faster conversion was found in N2 suggesting that the lower molecular diffusion coefficient of O2 in CO2 lowers the char conversion rate when external mass transfer influences combustion. The reaction of char with CO2 was not observed to have an influence on char conversion rates at the applied experimental conditions.  相似文献   

5.
In the present work, direct hydroxylation of benzene to phenol by using in situ generated H2O2 with electricity cogeneration was carried out in a proton exchange membrane fuel cell (PEMFC) reactor. Phenol was produced only when there was current through the external circuit. No other organic products were detected during this electrochemical process. A rotating ring-disc electrode (RRDE) technique was used to quantitatively detect the intermediate H2O2 in an acid electrolyte solution at different potentials and temperatures. The RRDE studies showed that the in situ generated H2O2 may play a crucial role during the formation of phenol. The formation rate of phenol could be controlled by adjusting the current or cell potential.  相似文献   

6.
The processing of molybdenum-uranium ore in a sulfuric acid solution using hydrogen peroxide as an oxidant has been investigated. The leaching temperature, hydrogen peroxide concentration, sulfuric acid concentration, leaching time, particle size, liquid-to-solid ratio and agitation speed all have significant effects on the process. The optimum process operating parameters were: temperature: 95°C; H2O2 concentration: 0.5 M; sulfuric acid concentration: 2.5 M; time: 2 h; particle size: 74 μm, liquid-to-solid ratio: 14 ∶ 1 and agitation speed: 600 rpm. Under these experimental conditions, the extraction efficiency of molybdenum was about 98.4%, and the uranium extraction efficiency was about 98.7%. The leaching kinetics of molybdenum showed that the reaction rate of the leaching process is controlled by the chemical reaction at the particle surface. The leaching process follows the kinetic model 1 ? (1?X)1/3 = kt with an apparent activation energy of 40.40 kJ/mole. The temperature, concentrations of H2O2 and H2SO4 and the mesh size are the main factors that influence the leaching rate. The reaction order in H2SO4 was 1.0012 and in H2O2 it was 1.2544.  相似文献   

7.
The catalytic pyrolysis of naphtha has been performed in a quartz reactor to produce the light olefins at high yields. The catalytic pyrolysis leads to 10 and 5% higher values in the yields of ethylene and propylene, respectively, compared to the thermal pyrolysis at the same operation condition. The enhancement of olefin yield in the presence of catalyst comes from the better heat transfer through the catalyst particles. KVO3 plays role of a catalyst to accelerate the gasification of coke deposited on the catalyst surface and its optimum range is found to be more than 10 wt.%. An addition of B2O3 into KVO3-based catalyst causes a strong interaction between metal oxide (KVO3) and -Al2O3 support, which decreases the loss by an evaporation of active phase.  相似文献   

8.
Eric M. Suuberg 《Fuel》2009,88(1):179-901
The oxidation behavior of tire-derived fuel (TDF) char has recently been studied by several groups. In the present study, TDF char oxidation has been examined between 670 and 825 K, at oxygen partial pressures ranging from 2 to 19.8 kPa. The order of reaction with respect to oxygen varied with burnoff, and was in the range 0.72-0.86. The activation energy of reaction ranged with burnoff from 138 to 150 kJ/mol. The reaction rate does not correlate well with BET surface area, but did correlate well with the surface area in pores ranging in size from 1.2 to roughly 7 nm in width. Pores smaller than 1.2 nm exist in the char, but appear not to be used or developed by the oxidation reaction. Results for chars that have been acid washed to remove some inorganic matter show lowered reactivity, and a distinctly different pattern of pore development with burnoff. This is, in turn, reflected in a very different pattern of reactivity change with burnoff for such materials.  相似文献   

9.
Formation of H2O2 from H2 and O2 and decomposition/hydrogenation of H2O2 have been studied in aqueous acidic medium over Pd/SiO2 catalyst in presence of different halide ions (viz. F, Cl and Br). The halide ions were introduced in the catalytic system via incorporating them in the catalyst or by adding into the reaction medium. The nature of the halide ions present in the catalytic system showed profound influence on the H2O2 formation selectivity in the H2 to H2O2 oxidation over the catalyst. The H2O2 destruction via catalytic decomposition and by hydrogenation (in presence of hydrogen) was also found to be strongly dependent upon the nature of the halide ions present in the catalytic system. Among the different halides, Br was found to selectivity promote the conversion of H2 to H2O2 by significantly reducing the H2O2 decomposition and hydrogenation over the catalyst. The other halides, on the other hand, showed a negative influence on the H2O2 formation by promoting the H2 combustion to water and/or by increasing the rate of decomposition/hydrogenation of H2O2 over the catalyst. An optimum concentration of Br ions in the reaction medium or in the catalyst was found to be crucial for obtaining the higher H2O2 yield in the direct synthesis.  相似文献   

10.
D.G. Roberts  D.J. Harris 《Fuel》2007,86(17-18):2672-2678
Our understanding of char gasification reaction kinetics at high pressures is generally limited to analyses of data generated using pure reactants, or reactants diluted with inert gases. This paper presents data generated for the reaction of coal chars with mixtures of CO2 and H2O at high pressures, to determine how existing pure-gas rate data can be applied to more realistic gasification systems. The data presented here show that the rate of reaction in a mixture of CO2 and H2O is not the sum of the two pure-gas reaction rates; rather, it is a complex combination of the two that appears to be dependant on the blocking of reaction sites by the relatively slow C–CO2 reaction. Analysis of the results using a Langmuir–Hinshelwood (LH) style of rate equation with the assumption that both reactions compete for the same active surface, produces a model that explains the experimental data. This model allows reaction rates in mixtures of CO2 and H2O to be estimated based on existing, measured pure-gas reactivity data or from ‘first principles’ using knowledge of the rate constants for the LH equation.  相似文献   

11.
Xue Jiang  Wenshuai Zhu  Huoming Shu 《Fuel》2009,88(3):431-436
Oxidation of dibenzothiphene (DBT) in model oil with H2O2 using surfactant-type decatungstates Q4W10O32 (Q = (CH3)3NC16H33, (CH3)3NC14H29, (CH3)3NC12H25 and (CH3)3NC10H21) as catalysts was studied. The surfactant-type decatungstates were synthesized and characterized. The suitable reaction condition of deep desulfurization was suggested: n(DBT):n(catalyst):n(H2O2) = 1:0.01:3, 60 °C for 0.5 h, under which the DBT conversion can reach 99.6% with [(CH3)3NC16H33]4W10O32 as catalyst. The length of carbon chains of quaternary ammonium cations played a vital role in the catalytic activity of surfactant-type decatungstates, that is, the longer the carbon chain of quaternary ammonium cation of a catalyst was, the better the activity of this catalyst showed. [(CH3)3NC16H33]4W10O32 exhibited the best catalytic performance and can be recycled for six times without significant decrease in catalytic activity. Using benzothiphene (BT) and 4,6-dimethyldibenzothiphene (4,6-DMDBT) as substrates in model oil, surfactant-type decatungstates also showed high catalytic activity. During desulfurization process, BT conversion can reach 99.6% at 3.25 h, while 99.4% of 4,6-DMDBT conversion reached at 1.25 h, with the temperature of 60 °C under atmospheric pressure. The sulfone can be separated from the oil using N,N-dimethylformamide (DMF) as an extractant, and the sulfur content can be lowered from 1000 to 4 ppm. For real diesel, the sulfur removal can reach 93.5% after five times extraction.  相似文献   

12.
FT-Raman spectroscopy has been used to identify structural features and evaluate the structural evolution of biomass chars during gasification with air. Chars prepared from the pyrolysis of a cane trash sample with a fast particle heating rate in a novel fluidised-bed/fixed-bed reactor at 500, 700 and 900 °C were oxidised at 400 °C in air in a TGA. The data derived from the spectral deconvolution of Fourier Transform — Raman spectra suggest that the 500 °C char showed very different structural features after pyrolysis and during oxidation from the 700 and 900 °C chars, while the differences between the latter two chars were small. Preferential consumption by O2 of smaller aromatic rings and structures of somewhat aliphatic characteristics left the char more enriched with larger aromatic ring systems. The changes in char structure are in agreement with the observed reactivity measured in O2 in a thermogravimetric analyser.  相似文献   

13.
There is growing interest in the use of scrap tires as both a fuel and a feed material for petroleum feedstocks due to their abundance and their chemical composition. However, the sulfur content of scrap tires is a potential obstacle to scrap tires utilization as a fuel. In this paper, the partitioning of sulfur was investigated from the two major pyrolytic products from passenger car tires, liquid oils and solid chars, and the potential of producing a low sulfur char for fuel applications. The removal of sulfur during tire pyrolysis offers the greatest potential for the separation of sulfur products from the evolved gases and vapors. The influences of heating rate and pyrolysis temperature were investigated from 325 to 1000 °C, a range where substantial devolatilization occurs. The pyrolysis char and derived oil were analyzed for sulfur, and compared to the original parent sulfur content in tire derived fuel (TDF) samples. The results of sulfur determination verify that the overall desulfurization from the pyrolysis reaction is essentially unaffected by the heating rate but is affected by the ultimate pyrolysis temperature.  相似文献   

14.
A model for H2O2 formation, transport, and reaction in PEMFCs is established for the first time. Profiles of oxygen and H2O2 concentration inside the fuel cell are simulated using the agglomerate model for the electrode. The predicted concentration of H2O2 shows the same trend as experimental data under different conditions, but the level was only of the same magnitude. Low humidity, high temperature, and high oxygen/hydrogen partial pressures were found to increase the concentration of H2O2. An increase in membrane thickness or metal ion contaminant level reduces the concentration of H2O2 in the membrane. Lowering the oxygen permeability in the ionomer is the most important and effective method to reduce the formation of H2O2. The simulation results also show little change in H2O2 concentration while operating the fuel cell above 0.6 V. Anodes designed with considerable thickness, high catalyst loadings and active areas can also help to suppress H2O2 formation. Finally, recommendations are made to mitigate the effects of H2O2 and prolong membrane lifetimes.  相似文献   

15.
Masakazu Sakaguchi 《Fuel》2010,89(10):3078-3084
A slurry of bio-oil and char originating from wood pyrolysis is a promising gasifier feed-stock because of its high energy density. When such a slurry is injected into a high temperature gasifier it undergoes a rapid pyrolysis yielding a char which then reacts with steam. The char produced by pyrolysis of an 80 wt% bio-oil/20 wt% char mixture at heating rates of 100-10,000 °C/s was subjected to steam gasification in a thermogravimetric analyzer. The original wood char from the bio-oil production was also tested. Gasification was conducted with 10-50 mol% steam at temperatures from 800 to 1200 °C. Reactivity of the slurry chars increased with pyrolysis heating rate, but was lower than that of the original chars. Kinetic parameters were established for a power-law rate model of the steam-char reaction, and compared to values from the literature. At temperatures over 1000 °C, the gasification rates appeared to be affected by diffusional resistance.  相似文献   

16.
Char reactivity is an important factor influencing the efficiency of a gasification process. As a low-rank fuel, Victorian brown coal with high gasification reactivity is especially suitable for use with gasification-based technologies. In this study, a Victorian brown coal was gasified at 800 °C in a fluidised-bed/fixed-bed reactor. Two different gasifying agents were used, which were 4000 ppm O2 balanced with argon and pure CO2. The chars produced at different gasification conversion levels were further analysed with a thermogravimetric analyser (TGA) at 400 °C in air for their reactivities. The structural features of these chars were also characterised with FT-Raman/IR spectroscopy. The contents of alkali and alkaline earth metallic species in these chars were quantified. The reactivities of the chars prepared from the gasification in pure CO2 at 800 °C were of a much higher magnitude than those obtained for the chars prepared from the gasification in 4000 ppm O2 also at 800 °C. Even though both atmospheres (i.e. 4000 ppm O2 and pure CO2) are oxidising conditions, the results indicate that the reaction mechanisms for the gasification of brown coal char at 800 °C in these two gasifying atmospheres are different. FT-Raman/IR results showed that the char structure has been changed drastically during the gasification process.  相似文献   

17.
The oxidation of lignin in synthetic aqueous solutions as well as in the biologically treated pulp-and-paper mill wastewater with hydrogen peroxide was studied in various methods: hydrogen peroxide UV-photolysis, homogeneous, heterogeneous and UV-assisted heterogeneous Fenton reactions, catalysed by FeZSM-5 zeolite. Contrasting the low-molecular organic contaminants, the oxidation of lignin in aqueous solutions was drastically slowed down in presence of heterogeneous FeZSM-5 zeolite, showing the superior performance of acidic homogeneous Fenton and hydrogen peroxide photolysis. This is explained by steric hindrance in oxidation of lignin with OH radicals on the catalyst surface and possible deactivation of lignin molecules adsorbed on the zeolite. The hydrogen peroxide photolysis among the studied delignification methods appeared to be the most efficient one in a wide range of pH.  相似文献   

18.
Mercury emissions from coal-fired power plants account for 40% of the anthropogenic mercury emissions in the U.S. The speciation of mercury largely determines the amount of mercury capture in control equipments. Conversion of insoluble Hg0 into more soluble Hg2+ facilitates its removal in scrubbers. Past studies suggest that an added supply of OH radicals possibly enhance the mercury oxidation process. This study demonstrates that the application of H2O2, as source of OH radicals, accelerates the oxidation of Hg0 into Hg2+. A detailed kinetic reaction mechanism was compiled and the reaction pathways were established to analyze the effect of H2O2 addition. The optimum temperature range for the oxidation was 480–490 °C. The sensitivity analysis of the reaction mechanism indicates that the supply OH radicals increase the formation of atomic Cl, which accelerates the formation of HgCl2 enhancing the oxidation process. Also, the pathway through HOCl radical, generated by the interactions between chlorine and H2O2 was prominent in the oxidation of Hg0. The flue gas NO was found to be inhibiting the Hg0 oxidation, since it competed for the supplied H2O2. Studying the interactions with the other flue gas components and the surface chemistry with particles in the flue gas could be important and may improve the insight into the post combustion transformation of mercury in a comprehensive way.  相似文献   

19.
Removal of SO2 by activated carbon fibers in the presence of O2 and H2O   总被引:1,自引:0,他引:1  
Vivekanand Gaur 《Carbon》2006,44(1):46-60
This work describes the potential capability of activated carbon fibers (ACFs) in continuously removing SO2 from inert atmosphere without requiring further regeneration. A tubular reactor packed with ACF was used to study the conversion of SO2 into H2SO4 in the presence of O2 and H2O with varying concentrations of SO2 (3000-10,000 ppm), O2 (10-20%), and H2O (10-70%) and temperatures (313-348 K). The experiments were carried out on two precursors (viscose rayon and phenolic resin) based ACFs. The breakthrough data revealed that the steady-state SO2 concentration levels at the reactor exit increased with increasing inlet SO2 concentration and decreased with increasing concentration levels of O2 as well as H2O. Increase in the reaction temperature was found to moderately enhance the steady-state exit concentration levels of SO2. The viscose rayon-based ACF exhibited higher SO2 removal activity in comparison to the phenolic resin-based ACF. A mathematical model was developed to predict the gas concentration profiles in the reactor, incorporating the mass transfer in the bed as well as within the ACF pores, along with the surface reactions on the ACF. The model predictions agreed reasonably well with the data.  相似文献   

20.
裂解装置提供了石化行业大部分基础原料,石脑油是目前国内外重要的裂解原料。对石脑油裂解反应过程、结焦过程和裂解炉辐射段的建模与仿真进行了综述:目前对分子动力学研究较多,用于离线仿真能够获得较好的效果,但在线应用不多;自由基动力学模型则是深入研究石脑油裂解过程本质的必然途径,在实际应用中越来越显示出其优越性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号