首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dry autothermal reforming of glycerol uses a combination of dry (CO2) reforming and partial oxidation reactions to produce syngas rich product stream. Thermodynamic equilibrium data for dry autothermal reforming of glycerol was generated for temperature range 600-1000 K, 1 bar pressure, OCGR [feed O2/C (C of glycerol only) ratio] 0.1 to 0.5 and CGR [feed CO2/glycerol ratio] 1 to 5 and analyzed. The objective of the paper is to identify the thermodynamic domain of the process operation, study the variation of product distribution pattern and describe the optimum conditions to maximize yield of the desired product and minimize the undesired product formation. Higher OCGR and higher CGR yielded a syngas ratio (∼ 1), with lower carbon and methane formation, while lower CGR and lower OCGR yielded good hydrogen and total hydrogen, with low water and CO2 production. The best thermoneutral condition for DATR of glycerol operation was seen at a temperature of 926.31 K at 1 bar pressure, OCGR = 0.3 and CGR = 1 that gave 2.67 mol of hydrogen, 4.8 mol of total hydrogen with negligible methane and carbon formations.  相似文献   

2.
In this work, 3% Ru-Al2O3 and 2% Rh-CeO2 catalysts were synthesized and tested for CH4-CO2 reforming activity using either CO2-rich or CO2-lean model biogas feed. Low carbon deposition was observed on both catalysts, which negligibly influenced catalytic activity. Catalyst deactivation during temperature programmed reaction was observed only with Ru-Al2O3, which was caused by metallic cluster sintering. Both catalysts exhibited good stability during the 70 h exposure to undiluted equimolar CH4/CO2 gas stream at 750 °C. By varying residence time in the reactor during CH4-CO2 reforming, very similar quantities of H2 were consumed for water formation. Reverse water-gas shift (RWGS) reaction occurred to a very similar extent either with low or high WHSV values over both catalysts, revealing that product gas mixture contained near RWGS equilibrium composition, confirming the dominance of WGS reaction and showing that shortening the contact time would actually decrease the H2/CO ratio in the syngas produced by CH4-CO2 reforming, as long as RWGS is quasi equilibrated. H2/CO molar ratio in the produced syngas can be increased either by operating at higher temperatures, or by using a feed stream with CH4/CO2 ratio well above 1.  相似文献   

3.
This work is aimed at understanding the reaction mechanism of propane internal reforming in the solid oxide fuel cell (SOFC). This mechanism is important for the design and operation of SOFC internal processing of hydrocarbons. An anode-supported SOFC unit with Ni-YSZ anode operating at 800 °C was tested with direct feeding of 5% propane. CO2 reforming of propane was carried out in a reactor with Ni-YSZ catalyst to simulate internal propane processing in SOFC. The performance of this direct propane SOFC is stable. The C specie formed over the anode functional layer of SOFC can be completely removed. The major gas products of SOFC are H2, CO, CH4, C2H4 and CO2. Pseudo-steady-state internal processing of propane in the anode catalytic layer of SOFC is associated with a CO2/C3H8 molar ratio of about 1.26 and basically CO2 reforming of propane. CO2 dissociation to produce the O species to oxidize the C species from dehydrogenation and dissociation of propane and its fragments should be the major reaction during CO2 reforming of propane.  相似文献   

4.
Chemical-looping combustion (CLC) is a promising technology for CO2-capture for storage or reuse as a method to mitigate CO2 emissions from the use of fossil fuels. In a CLC system the oxygen carrier is of great importance. Environmentally sound and low cost materials seem to be preferable especially for CLC of solid fuels. The natural occurring ore ilmenite has already been the target of different studies in order to work out its feasibility as oxygen carrier for different fuels. The initial part of this work is a screening of five commercial available ilmenite minerals as oxygen carrier, crushed and sieved to 125–180 μm. The screening includes an examination of the sulfur released during the first heat up and the activation of the oxygen carrier, indicated by the fuel conversion using alternating reduction (syngas 50 vol.% CO in H2) and oxidation conditions (10 vol.% O2 in N2). The five first cycles were carried out at 850 °C to avoid initial agglomeration whereas the main activation cycles have been performed at 950 °C in a tubular quartz reactor under fluidized bed conditions. From these experiments it is concluded that rock ilmenites are preferable as oxygen carriers since they revealed an improved fuel conversion, although offering a higher sulfur content, which is released during the initial heat up.  相似文献   

5.
High-pressure phase behaviors are measured for the CO2 + neopentyl methacrylate (NPMA) system at 40, 60, 80, 100, and 120 °C and pressure up to 160 bar. This system exhibits type-I phase behavior with a continuous mixture-critical curve. The experimental results for the CO2 + NPMA system are modeled using the Peng-Robinson equation of state. Experimental cloud-point data up to the temperature of 180 °C and the pressure of 2000 bar are presented for ternary mixtures of poly(neopentyl methacrylate) [poly(NPMA)] + supercritical solvents + NPMA systems. Cloud-point pressures of poly(NPMA) + CO2 + NPMA system are measured in the temperature range of 60-180 °C and to pressures as high as 2000 bar with NPMA concentration of 0.0, 5.2, 19.0, 28.1 and 40.2 wt%. It appears that adding 51.2 wt% NPMA to the poly(NPMA) + CO2 mixture does significantly change the phase behavior. Cloud-point curves are obtained for the binary mixtures of poly(NPMA) in supercritical propane, propylene, butane, 1-butene, and dimethyl ether (DME). The impact of dimethyl ether concentration on the phase behavior of the poly(NPMA) + CO2 + x wt% DME system is also measured at temperature of 180 °C and pressure range of 36-2000 bar. This system changes the pressure-temperature (P-T) slope of the phase behavior curves from upper critical solution temperature (UCST) region to lower critical solution temperature (LCST) region as the NPMA concentration increases.  相似文献   

6.
A thermodynamic equilibrium analysis on the multi-reaction system for carbon dioxide reforming of methane in view of carbon formation was performed with Aspen plus based on direct minimization of Gibbs free energy method. The effects of CO2/CH4 ratio (0.5-3), reaction temperature (573-1473 K) and pressure (1-25 atm) on equilibrium conversions, product compositions and solid carbon were studied. Numerical analysis revealed that the optimal working conditions for syngas production in Fischer-Tropsch synthesis were at temperatures higher than 1173 K for CO2/CH4 ratio being 1 at which about 4 mol of syngas (H2/CO = 1) could be produced from 2 mol of reactants with negligible amount of carbon formation. Although temperatures above 973 K had suppressed the carbon formation, the moles of water formed increased especially at higher CO2/CH4 ratios (being 2 and 3). The increment could be attributed to RWGS reaction attested by the enhanced number of CO moles, declined H2 moles and gradual increment of CO2 conversion. The simulated reactant conversions and product distribution were compared with experimental results in the literatures to study the differences between the real behavior and thermodynamic equilibrium profile of CO2 reforming of methane. The potential of producing decent yields of ethylene, ethane, methanol and dimethyl ether seemed to depend on active and selective catalysts. Higher pressures suppressed the effect of temperature on reactant conversion, augmented carbon deposition and decreased CO and H2 production due to methane decomposition and CO disproportionation reactions. Analysis of oxidative CO2 reforming of methane with equal amount of CH4 and CO2 revealed reactant conversions and syngas yields above 90% corresponded to the optimal operating temperature and feed ratio of 1073 K and CO2:CH4:O2 = 1:1:0.1, respectively. The H2/CO ratio was maintained at unity while water formation was minimized and solid carbon eliminated.  相似文献   

7.
The catalytic reduction of CO2 by propane may occur via dry reforming to produce syngas (CO + H2) or oxidative dehydrogenation to yield propylene. Utilizing propane and CO2 as coreactants presents several advantages over conventional methane dry reforming or direct propane dehydrogenation, including lower operating temperatures and less coke formation. Thus, it is of great interest to identify catalytic systems that can either effectively break the C C bond to generate syngas or selectively break C H bonds to produce propylene. In this study, several precious and nonprecious bimetallic catalysts supported on reducible CeO2 were investigated using flow reactor studies at 823 K to identify selective catalysts for CO2-assisted reforming and dehydrogenation of propane.  相似文献   

8.
A bench-scale oxygen-blown fluid-bed gasifier was coupled to a modular fixed-bed Fischer-Tropsch (FT) reactor system for testing an FT catalyst under syngas. Various blends of subbituminous coal, torrefied biomass, and untreated biomass were gasified at 22 bar absolute, 800°-860 °C, and 4 kg/h. Syngas exiting the fluid bed passed through a cyclone, candle filter, and sulfur sorbent to reduce fine particulate and H2S to levels well below 1 ppmv. The syngas was cooled to condense out moisture and volatiles and then reheated to temperatures required for FT synthesis. The clean syngas then flowed into the FT reactor with a 5:1 ratio of recycled FT product gas-to-fresh syngas feed. A 70% overall conversion of CO and H2 was achieved at 269 °C and 18.9 bar over an iron-based catalyst supported on gamma-alumina pellets.  相似文献   

9.
A new regenerable alumina-modified sorbent was developed for CO2 capture at temperatures below 200 °C. The CO2 capture capacity of a potassium-based sorbent containing Al2O3 (KAlI) decreased during multiple CO2 sorption (60 °C) and regeneration (200 °C) tests due to the formation of the KAl(CO3)(OH)2 phase, which could be converted into the original K2CO3 phase above 300 °C. However, the new regenerable potassium-based sorbent (Re-KAl(I)) maintained its CO2 capture capacity during multiple tests even at a regeneration temperature of 130 °C. In particular, the CO2 capture capacity of the Re-KAl(I)60 sorbent which was prepared by the impregnation of Al2O3 with 60 wt.% K2CO3 was about 128 mg CO2/g sorbent. This excellent CO2 capture capacity and regeneration property were due to the characteristics of the Re-KAl(I) sorbent producing only a KHCO3 phase during CO2 sorption, unlike the KAlI30 sorbent which formed the KHCO3 and KAl(CO3)(OH)2 phases even at 60 °C. This result was explained through the structural effect of the support containing the KAl(CO3)(OH)2 phase which was prepared by impregnation of Al2O3 with K2CO3 in the presence of CO2.  相似文献   

10.
Supported nickel catalysts with core/shell structures of Ni/Al2O3 and Ni/MgO-Al2O3 were synthesized under multi-bubble sonoluminescence (MBSL) conditions and tested for dry reforming of methane (DRM) to produce hydrogen and carbon monoxide. A supported Ni catalyst made of 10% Ni loading on Al2O3 and MgO-Al2O3, which performed best in the steam reforming of methane (97% methane conversion at 750 °C) and in the partial oxidation of methane (96% methane conversion at 800 °C), showed also good performance in DRM and excellent thermal stability for the first 150 h. The supported Ni catalysts Ni/Al2O3 and Ni/MgO-Al2O3 yielded methane conversions of 92% and 92.5%, respectively and CO2 conversions of 95.0% and 91.8%, respectively, at a reaction temperature of 800 °C with a molar ratio of CH4/CO2 = 1. Those were near thermodynamic equilibrium values.  相似文献   

11.
Selective synthesis of gasoline-range hydrocarbons (C5-C12) was investigated in a fixed-bed micro reactor using two series of CO2-containing syngas with various mole CO2/(CO + CO2) and H2/(CO + CO2) ratios, where Fischer-Tropsch synthesis(FTS) and in situ hydrocracking/hydroisomerization were performed over bifunctional Co/SiO2/HZSM-5 catalyst. CO2 was converted at 0.15-0.55 of CO2/(CO + CO2) ratio under H2-rich condition (H2/(CO + CO2) = 2.0), highest conversion of 20.3% at 0.42. Further increasing CO2 content decreased CO2 conversion and quite amount of CO2 acted as diluting component. For the syngas with low H2 content or H2/(CO + CO2) ratio(< 1.85, H2/CO = 2.0), the competitive adsorption of CO, H2 and CO2 resulted in low CO, CO2 and total carbon conversion, which was 57.9%, 12.7% and 31.4% respectively at 0.74 of H2/(CO + CO2) ratio(H2/CO/CO2/N2 = 40.8/20.4/34.8/4). FTS results indicated that high H2 content and proper H2/(CO + CO2) ratio were favorable for the conversion of CO2-containing syngas. More than 45% selectivity to gasoline-range hydrocarbons including isoparaffins was obtained under the two series of syngas. It was also tested that the catalytic activity of Co/SiO2/HZSM-5 kept stable under CO2-containing syngas(< 7.5%). And the quick catalytic deactivation under high CO2 containing syngas(H2/CO/CO2/N2 = 45.3/23.2/27.1/3.06) was due to carbon deposition and pore blockage by heavy hydrocarbon, tested by thermal gravimetry, N2 physisorption and scanning electron microscopy(SEM).  相似文献   

12.
The coal combustion fly-ash and alkaline paper mill waste were previously used to sequester CO2 via waste-water-CO2 interactions. For this case, a solid mixture (calcite and un-reacted waste) was obtained after carbonation process. In the present study, we propose a solid-water separation of free lime (CaO) or free portlandite (Ca(OH)2) contained in waste prior to carbonation experiments in order to produce pure calcite or calcite/Se0 red composite. The calcite and carbonate composite syntheses have been also independently studied, but for both cases, a commercial powdered portlandite was used as calcium source.For this study, the extracted alkaline-solution (pH = 12.2-12.4 and Ca concentration = 810-870 mg/L) from alkaline solid waste was placed in contact with compressed or supercritical CO2 at moderate or high temperature, leading a preferential nucleation-growth of submicrometric particles of calcite (<1 μm) with rhombohedral morphology at 90 °C and 90 bar (9 MPa), whereas a preferential nucleation-growth of nanometric particles of calcite (<0.2 μm) with scalenohedral morphology at 30 °C and 20 bar (2 MPa) were observed. When, the extracted alkaline-solution was placed in contact with supercritical CO2 (90 bar) at high temperature (90 °C) and in presence of unstable seleno-l-cystine compound, the nucleation-growth of calcite/Se0 red nano-composite taken place. The composite consisted predominantly of spherical, amorphous nanometric-to-submicrometric of elemental red selenium (<500 nm) deposited on the calcite matrix. Here, the calcite was constituted by nano- to microrhombohedral crystals (<2 μm) and micrometric agglomerates and/or aggregates (<5 μm). These results on the particle size and morphology of crystal faces are very similar to calcite produced using commercial powdered portlandite as alkaline reactant and calcium source. This study is a nice example of feasibility to obtain possible ecological and economical benefits from waste co-utilisation.  相似文献   

13.
Behavior of ilmenite as oxygen carrier in chemical-looping combustion   总被引:1,自引:0,他引:1  
For a future scenery where will exist limitation for CO2 emissions, chemical-looping combustion (CLC) has been identified as a promising technology to reduce the cost related to CO2 capture from power plants. In CLC a solid oxygen-carrier transfers oxygen from the air to the fuel in a cyclic manner, avoiding direct contact between them. CO2 is inherently obtained in a separate stream. For this process the oxygen-carrier circulates between two interconnected fluidized-bed reactors. To adapt CLC for solid fuels the oxygen-carrier reacts with the gas proceeding from the solid fuel gasification, which is carried out right in the fuel-reactor. Ilmenite, a natural mineral composed of FeTiO3, is a low cost and promising material for its use on a large scale in CLC.The aim of this study is to analyze the behavior of ilmenite as oxygen-carrier in CLC. Particular attention was put on the variation of chemical and physical characteristics of ilmenite particles during consecutive redox cycles in a batch fluidized-bed reactor using CH4, H2 and CO as reducing gases. Reaction with H2 was faster than with CO, and near full H2 conversion was obtained in the fluidized-bed. Lower reactivity was found for CH4. Ilmenite increased its reactivity with the number of cycles, especially for CH4. The structural changes of ilmenite, as well as the variations in its behavior with a high number of cycles were also evaluated with a 100 cycle test using a CO + H2 syngas mixture. Tests with different H2:CO ratios were also made in order to see the reciprocal influence of both reducing gases and it turned out that the reaction rate is the sum of the individual reaction rates of H2 and CO. The oxidation reaction of ilmenite was also investigated. An activation process for the oxidation reaction was observed and two steps for the reaction development were differenced. The oxidation reaction was fast and complete oxidation could be reached after every cycle. Low attrition values were found and no defluidization was observed during fluidized-bed operation. During activation process, the porosity of particles increased from low porosity values up to values of 27.5%. The appearance of an external shell in the particle was observed, which is Fe enriched. The segregation of Fe from TiO2 causes that the oxygen transport capacity, ROC, decreases from the initial ROC = 4.0% to 2.1% after 100 redox cycles.  相似文献   

14.
Supported nickel catalysts with a core/shell structure of Ni/Al2O3 and Ni/MgO-Al2O3 synthesized under multi-bubble sonoluminescence (MBSL) conditions were tested for mixed steam and dry (CO2) reforming and autothermal reforming of methane. In the previous tests, the supported Ni catalysts made of 10% Ni loading on Al2O3 or MgO-Al2O3 had shown good performances in the steam reforming of methane (methane conversion of 97% at 750 °C), in the partial oxidation of methane (methane conversion of 96% at 800 °C) and in dry reforming of methane (methane conversion of 96% at 850 °C) and showed high thermal stability for the first 50-150 h. In this study, the supported Ni catalysts showed good performance in the mixed and autothermal reforming of methane with their excellent thermal stability for the first 50 h. In addition, very interestingly, there was no appreciable carbon deposition on the surface of the tested catalysts after the reforming reaction.  相似文献   

15.
Ni modified K2CO3/MoS2 catalyst was prepared and the performance of higher alcohol synthesis catalyst was investigated under the conditions: T = 280–340 °C, H2/CO (molar radio) = 2.0, GHSV = 3000 h 1, and P = 10.0 MPa. Compared with conventional K2CO3/MoS2 catalyst, Ni/K2CO3/MoS2 catalyst showed higher activity and higher selectivity to C2+OH. The optimum temperature range was 320–340 °C and the maximum space-time yield (STY) of alcohol 0.30 g/ml h was obtained at 320 °C. The selectivity to hydrocarbons over Ni/K2CO3/MoS2 was higher, however, it was close to that of K2CO3/MoS2 catalyst as the temperature increased. The results indicated that nickel was an efficient promoter to improve the activity and selectivity of K2CO3/MoS2 catalyst.  相似文献   

16.
Partially biodegradable porous scaffolds incorporating bioactive molecules prepared by clean techniques posses an enormous interest in tissue engineering applications. Poly(methyl methacrylate)-poly(l-lactic acid) (PMMA-PLA) blends were submitted to CO2 supercritical conditions (P = 160-260 bar, T = 60 °C) after certain time and then rapidly depressurized to obtain porous structures that have been related with the supercritical parameters and to the polymer blend composition. In some cases ibuprofen was also incorporated to the formulations previously to the CO2 treatment and studied the appropriate conditions for avoiding its extraction in SCCO2. Scaffolds purity, thermal transitions, swelling and degradation behaviour, and the ibuprofen release were also studied to determine the appropriate scaffolds with a desired porosity for cell seeding. Cell culture was performed on the selected porous scaffolds using human fibroblast examined by scanning electron microscopy (SEM).  相似文献   

17.
Carbonation of fly ash in oxy-fuel CFB combustion   总被引:1,自引:0,他引:1  
Chunbo Wang  Yewen Tan 《Fuel》2008,87(7):1108-1114
Oxy-fuel combustion of fossil fuel is one of the most promising methods to produce a stream of concentrated CO2 ready for sequestration. Oxy-fuel FBC (fluidized bed combustion) can use limestone as a sorbent for in situ capture of sulphur dioxide. Limestone will not calcine to CaO under typical oxy-fuel circulating FBC (CFBC) operating temperatures because of the high CO2 partial pressures. However, for some fuels, such as anthracites and petroleum cokes, the typical combustion temperature is above 900 °C. At CO2 concentrations of 80-85% (typical of oxy-fuel CFBC conditions with flue gas recycle) limestone still calcines, but when the ash cools to the calcination temperature, carbonation of fly ash deposited on cool surfaces may occur. This phenomenon has the potential to cause fouling of the heat transfer surfaces in the back end of the boiler, and to create serious operational difficulties. In this study, fly ash generated in a utility CFBC boiler was carbonated in a thermogravimetric analyzer (TGA) under conditions expected in an oxy-fuel CFBC. The temperature range investigated was from 250 to 800 °C with CO2 concentration set at 80% and H2O concentrations at 0%, 8% and 15%, and the rate and the extent of the carbonation reaction were determined. Both temperature and H2O concentrations played important roles in determining the reaction rate and extent of carbonation. The results also showed that, in different temperature ranges, the carbonation of fly ash displayed different characteristics: in the range 400 °C < T ? 800 °C, the higher the temperature the higher the CaO-to-carbonate conversion ratio. The presence of H2O in the gas phase always resulted in higher CaO conversion ratio than that obtainable without H2O. For T ? 400 °C, no fly ash carbonation occurred without the presence of H2O in the gas phase. However, on water vapour addition, carbonation was observed, even at 250 °C. For T ? 300 °C, small amounts of Ca(OH)2 were found in the final product alongside CaCO3. Here, the carbonation mechanism is discussed and the apparent activation energy for the overall reaction determined.  相似文献   

18.
Chemical-looping combustion is a promising technology that concentrates CO2 and separates it during combustion. In this study, both the carbon deposition and sulfur evolution in the reduction of a calcium sulfate (CaSO4) oxygen carrier with a typical syngas were investigated using thermodynamic simulations. The effects of reaction temperature, operating pressure and the oxygen ratio number (defined in this paper) on the amount of deposited carbon and released sulfurous gases are discussed. A reaction temperature from 750 to 950 °C, an operating pressure from 1 to 15 bars and an oxygen ratio number between 0.4 and 0.8 were determined to be the most favorable operating conditions. In addition, the amounts of released sulfurous gases were found to be largely dependent on the partial pressures of H2 and CO based on the thermo-gravimetric analyzer (TGA) tests. When the partial pressure of H2 or CO was above 40 kPa, the release of sulfurous gases could be prevented in the reaction between CaSO4 and syngas, even if the reaction temperature was as high as 1000 °C. The XRD profiles of the products also demonstrated that the mole fraction of CaS in the products increased gradually with an increasing partial pressure of H2 or CO, until the products were almost pure CaS.  相似文献   

19.
Electrochemical decomposition of CO2 and CO gases using a porous cell of Ru-8 mol% yttria-stabilized zirconia (YSZ) anode/porous YSZ electrolyte/Ni–YSZ cathode system at 400–800 °C was studied by analyzing the flow rate and composition of outlet gas, current density, and phases and elementary distribution of the electrodes and electrolyte. A part of CO2 gas supplied at 50 ml/min was decomposed to solid carbon and O2 gas through the cell at the electric field strengths of 0.9–1.0 V/cm. The outlet gas at a flow rate of 3 ml/min included 61–63% CO2 and 37–39% O2 at 700–800 °C and the outlet gas at a flow rate of 50 ml/min included 73–96% (average 85%) CO2 and 4–27% (average 15%) O2 at 800 °C. On the other hand, the supplied CO gas was also decomposed to solid carbon, O2 and CO2 gases at 800 °C. The fraction of outlet gas at a flow rate of 50 ml/min during the CO decomposition at 800 °C for 5 h was 11–36% CO, 59–81% O2 and 2–9% CO2. The detailed decomposition mechanisms of CO2 and CO gases are discussed. Both Ni metal in the cathode and porous YSZ grains under the DC electric field have the ability to decompose CO gas into solid carbon and O2− ions or O2 gas.  相似文献   

20.
Phase equilibria of sunflower and soybean oils in propane and sulphur hexafluoride (SF6) have been investigated. The phase behavior of sunflower oil-propane and soybean oil-propane systems has been studied using high-pressure variable-volume cell. For both systems, the transition of the two-phase system to one-phase system was observed visually at 25 °C and 40 °C and at different system compositions generally in the range of 0.2-0.7 weight fraction of propane.Furthermore, high-pressure vapor-liquid phase equilibrium data (P-T-x-y) for the sunflower oil-SF6 and soybean oil-SF6 systems have been measured at temperatures of 25 °C and 40 °C and pressures from 10 bar to 500 bar using a static-analytic method. For the above mentioned systems with SF6 the tree phase region was observed at pressures near the phase transition of SF6 from vapor to liquid phase. Additionally, phase inversion for both investigated systems was recorded, as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号