首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fractions of waste polypropylene and polyethylene were pyrolyzed in a pyrolysis plant under different conditions. In this study, the influence of the reaction temperature (650-750 °C), the feed rate, and the kind of fluidizing medium on the product spectrum were investigated. Pyrolysis of the PP fraction produced oils up to 43 wt. % of the product. With respect to the PE fraction, the maximum oil yield was above 60 wt. % of the product. The target compound was BTX aromatics, whose amount in the oils reached 53 wt.% for the PP fraction and 32 wt. % for the PE fraction. It was shown that the PE fraction yielded a higher liquid product compared to the PP fraction, and that the concentration of aromatics in the oil increased at higher reaction temperatures for both the PP and PE fractions. A higher feed rate and the use of a gas product as the fluidizing medium were favored for the production of oils for both the PP and PE fractions. The oils that were obtained in the experiments almost had no metal and chlorine contents. The maximum heating value of the gas obtained in the experiments was about 50 MJ/kg.  相似文献   

2.
This paper evaluates the production of methyl esters from Oreochromis niloticus (Nile tilapia) oil and methanol. The reaction was carried out applying low-frequency high-intensity ultrasound (40 kHz) under atmospheric pressure and ambient temperature. Response surface methodology (RSM) was used to evaluate the influence of alcohol to oil molar ratio, catalyst concentration (sulfuric acid) and temperature on the yield of O. niloticus oil into methyl esters. Analysis of the operating conditions by RSM showed that the most important operating condition affecting the reaction was the alcohol to FFA molar ratio. The highest yield observed was of 98.2% after 90 min of reaction. The optimal operating condition was obtained applying an alcohol to oil molar ratio of 9.0 and a catalyst concentration of 2.0% w/w and temperature of 30 °C.  相似文献   

3.
This study investigates extraction of Passiflora seed oil by using supercritical carbon dioxide. Artificial neural network (ANN) and response surface methodology (RSM) were applied for modeling and the prediction of the oil extraction yield. Moreover, process optimization were carried out by using both methods to predict the best operating conditions, which resulted in the maximum extraction yield of the Passiflora seed oil. The maximum extraction yield of Passiflora seed oil was estimated by ANN to be 26.55% under the operational conditions of temperature 56.5 °C, pressure 23.3 MPa, and the extraction time 3.72 h; whereas the optimum oil extraction yield was 25.76% applying the operational circumstances of temperature 55.9 °C, pressure 25.8 MPa, and the extraction time 3.95 h by RSM method. In addition, mean-squared-error (MSE) and relative error methods were utilized to compare the predicted values of the oil extraction yield obtained from both models with the experimental data. The results of the comparison reveal the superiority of ANN model compared to RSM model.  相似文献   

4.
Polyethylene (PE) and polypropylene (PP) were reacted with benzoyl peroxide (BPO) and 2,2,6,6‐tetramethyl‐1‐piperidinyloxy (TEMPO) to prepare PE‐TEMPO and PP‐TEMPO macroinitiators, respectively. Molecular weight of PP decreased, whereas that of PE increased during the reaction with the BPO/TEMPO system. Polystyrene (PS) branches were grafted to PE and PP backbone chains as a result of bulk polymerization of styrene with the PE‐TEMPO and PP‐TEMPO macroinitiators. A significant amount of PS homopolymer was produced as a byproduct. Weight of the resulting PE‐g‐PS and PP‐g‐PS increased with the polymerization time up to 20 h and then leveled off. Melting point of PE and PP domains in PE‐g‐PS and PP‐g‐PS, respectively, lowered as the content of PS in the copolymers increased. However, glass transition of the copolymers was almost identical with that of PS homopolymer, indicating that the constituents in the copolymers were all phase‐separated from each other. In scanning electron microscopy of the incompatible PE/PS, PP/PS, and PE/PP/PS compounded with PE‐g‐PS and PP‐g‐PS, any clear indication of enhanced adhesion between the phases was not observed. However, phase domains in the blends were, nevertheless, reduced significantly to raise mechanical properties such as maximum stress and elongation at break by 20–75%. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1103–1111, 2002  相似文献   

5.
L. Elias  F. Fenouillot  Ph. Cassagnau 《Polymer》2007,48(20):6029-6040
The effect of silica nanoparticles on the morphology and the rheological properties of an immiscible polymer blend (polypropylene/polystyrene, PP/PS 70/30) was investigated. Two types of pyrogenic nanosilica were used: a hydrophilic silica with a specific surface area of 200 m2/g and a hydrophobic silica having a specific surface area of 150 m2/g. First, a significant reduction in the PS droplet volume radius, from 3.25 to nearly 1 μm for filled blends with 3 wt% silica, was observed. More interestingly, image analysis of the micrographs proved that the hydrophilic silica tends to confine in the PS phase whereas hydrophobic one was located in the PP phase and at the PP/PS interface (interphase thickness ≈ 100-200 nm). Furthermore, a migration of hydrophilic silica from PP phase toward PS domains was observed.An analysis of the rheological experimental data was based on the framework of the Palierne model, extended to filled immiscible blends. Due to the partition of silica particles in the two phases and its influence on the viscosity ratio, limited cases have been investigated. The rheological data obtained with the hydrophobic silica were more difficult to model since the existence of a thick interphase cannot be taken into account by the model. Finally, the hypothesis that hydrophilic silica is homogeneously dispersed in PS droplets and that hydrophobic silica is dispersed in PP matrix was much closer to the actual situation. It can be then concluded that stabilization mechanism of PP/PS blend by hydrophilic silica is the reduction in the interfacial tension whereas hydrophobic silica acts as a rigid layer preventing the coalescence of PS droplets.  相似文献   

6.
Nanometer dispersed polypropylene/polystyrene (PP/PS) interpenetrating networks (IPNs) have been prepared by the radical polymerization and crosslinking of styrene (St) within supercritical (SC) CO2-swollen PP substrates. In this method, monomer St, crosslinking agent divinyl benzene (DVB), and the initiator benzoyl peroxide were first impregnated into PP matrix using SC CO2 as a solvent and swelling agent at 35.0 °C, and then the polymerization and crosslinking were carried out at 120 °C. The composition of the IPNs can be controlled by SC CO2 pressure, concentrations of St and DVB in the fluid phase. Transmission electron microscopy shows that the PS is homogeneously dispersed in the IPNs and its phase size is in the range of 20-30 nm. The impact strength, tensile strength, and elongation-at-break of the PP/PS IPNs increase with increasing PS percentage in the IPNs.  相似文献   

7.
Continuous production of fatty acid methyl esters (FAMEs) from corn oil was studied in a supercritical carbon dioxide (SC-CO2) bioreactor using immobilized lipase (Novozym 435) as catalyst. Response surface methodology (RSM) based on central composite rotatable design (CCRD) was employed to investigate and optimize the reaction conditions: pressure (11-35 MPa), temperature (35-63 °C), substrate mole ratio (methanol:corn oil 1-9) and CO2 flow rate (0.4-3.6 L/min, measured at ambient conditions). Increasing the substrate mole ratio increased the FAME content, whereas increasing pressure decreased the FAME content. Higher conversions were obtained at higher and lower temperatures and CO2 flow rates compared to moderate temperatures and CO2 flow rates. The optimal reaction conditions generated from the predictive model for the maximum FAME content were 19.4 MPa, 62.9 °C, 7.03 substrate mole ratio and 0.72 L/min CO2 flow rate. The optimum predicted FAME content was 98.9% compared to an actual value of 93.3 ± 1.1% (w/w). The SC-CO2 bioreactor packed with immobilized lipase shows great potential for biodiesel production.  相似文献   

8.
This work addresses the performance and modeling of the separation of oil-in-water (o/w) emulsions using low cost ceramic membrane that was prepared from inorganic precursors such as kaolin, quartz, feldspar, sodium carbonate, boric acid and sodium metasilicate. Synthetic o/w emulsions constituting 125 and 250 mg/L oil concentrations were subjected to microfiltration (MF) using this membrane in batch mode of operation with varying trans-membrane pressure differentials (ΔP) ranging from 68.95 to 275.8 kPa. The membrane exhibited 98.8% oil rejection efficiency and 5.36 × 10−6 m3/m2 s permeate flux after 60 min of experimental run at 68.95 kPa trans-membrane pressure and 250 mg/L initial oil concentration. These experimental investigations confirmed the applicability of the prepared membrane in the treatment of o/w emulsions to yield permeate streams that can meet stricter environmental legislations (<10 mg/L). Subsequently, the experimental flux data has been subjected to modeling study using both conventional pore blocking models as well as back propagation-based multi-layer feed forward artificial neural network (ANN) model. Amongst several pore blocking models, the cake filtration model has been evaluated to be the best to represent the fouling phenomena. ANN has been found to perform better than the cake filtration model for the permeate flux prediction with marginally lower error values.  相似文献   

9.
A mixture of hospital post-commercial polymer waste (LDPE/HDPE/PP/PS) was pyrolyzed over various catalysts using a fluidized-bed reactor operating isothermally at ambient pressure. The yield of volatile hydrocarbons with zeolitic catalysts (ZSM-5 > MOR > USY) were higher than with non-zeolitic catalysts (MCM-41 > ASA). MCM-41 with large mesopores and ASA with weaker acid sites resulted in a highly olefinic product mixture with a wide carbon number distribution, whereas USY yielded a saturate-rich product mixture with a wide carbon number distribution and substantial coke levels. The systematic experiments discussed in this paper show that the use of various catalysts improves the yield of hydrocarbon products and provide better selectivity in the product distributions. A novel developed model based on kinetic and mechanistic considerations which take into account chemical reactions and catalyst deactivation for the catalytic degradation of commingled polymer waste has been investigated. This model represents the benefits of product selectivity for the chemical composition such as alkanes, alkenes, aromatics and coke in relation to the performance and the particle size selection of the catalyst used as well as the effect of the fluidizing gas and reaction temperature.  相似文献   

10.
Hydro-liquefaction of a woody biomass (Jack pine powder) in sub-/super-critical solution of ethanol without and with iron-based catalysts (5 wt% FeS or FeSO4) was investigated with a stainless steel micro-reactor (10 mL) at temperatures of 473-623 K and an initial pressure of hydrogen varying from 2.0 to 10.0 MPa. Without catalyst, the oil yields were in the range of 17% and 44%, depending on temperature, reaction time and initial pressure of hydrogen. With catalysts, the Oil yields significantly increased while the yields of solid residue and gases and water decreased. A high oil yield of 63% was obtained with FeSO4 at 623 K and 5 MPa of H2 for 40 min. The elemental analyses and GC/MS measurements for the Oils revealed that the liquid products have much higher heating values than the crude wood sample and phenolic compounds were dominant in the Oils, irrespective of whether or what catalyst was used.  相似文献   

11.
Pressurised electroosmotic dewatering (PED) is usually implemented in classical filters with the electrodes making a direct contact with the material or the filter cloths. Thus, electrolysis products generated at the electrodes (gas, ions) tend to accumulate in the solid/liquid mixture being dewatered. This results in a non-uniform distribution of water content, porosity, electric field intensity, and particle zeta potential throughout the mixture, affecting progress of the PED process. This paper proposes a specific design of filter press to study PED in the absence of disturbances from electrolysis products. An experimental study was carried out on a gelatinous bentonite suspension at 8.5% w/w solid. The influence of the ionic conductivity of suspension (2-25 mS/cm), the current intensity (20-300 mA) and the pressure (2.5-15 bar) were investigated. In order to improve the energetic yield of PED, the conductivity and current intensity should be limited, as observed in earlier works. The pressure increase considerably aids the water removal and leads to better product dryness. For PED at 15 bar and 100 mA, the bentonite reached 40% w/w solid for 0.7 kWh/kg of water removed. This study emphasises that to analyse PED precisely it is important to clarify the dependence of the electroosmotic flow rate on the porosity and pressure.  相似文献   

12.
Fluidised bed steam gasification has proven to be a possible way of converting biomass and plastic undesirable wastes into fuel gases. The addition of plastics to pine wastes decreased CO content, but increased H2 released, up to values of 50% (v/v). The highest gas yield obtained was 1.96 Nl/g daf for 98% of energy conversion, when 60% (w/w) of plastic was in the feedstock. The steam/waste mixture ratio seems to have a small effect on gas composition. Temperature is the parameter that most influenced gases composition. The rise of temperature favoured the formation of H2 and decreased the formation of hydrocarbons, tars and char. At 885°C and in presence of 40% (w/w) of plastic, conversion to char was around 2%, whilst feedstock conversion to gas was around 90%. In this paper, the effect of experimental conditions on gasification process, with the aim of enhancing the gas production and improving its composition and energetic content was analysed.  相似文献   

13.
Sirin Methakhup 《Fuel》2007,86(15):2485-2490
Extraction of Mae Moh lignite using toluene-tetralin mixture was performed in a batch reactor at a temperature range from 370 to 490 °C and under initial hydrogen pressure up to 12 MPa. Experiments were carried out to investigate the effects of temperature and initial hydrogen pressure on coal conversion, liquid yield and liquid composition. The effect of catalysts Fe2S3, Fe/Ni and Ni/Mo impregnated into activated carbon was also studied. In the absence of a catalyst, the oil yield decreased with temperature above 410 °C and the content of naphtha and kerosene increased while light gas oil and gas oil decreased with increasing temperature. The presence of catalyst would benefit the formation of lighter components, kerosene and light gas oil. Extraction in the presence of Ni/Mo catalyst, the liquid yield reached 64.6 wt% (daf) which included naphtha 2%, kerosene 72.8%, light gas oil 14.9%, gas oil 2.4% and long residue 7.9%. For GC-MS analysis, the fraction of kerosene was composed of tetralin, naphthalene, dodecamethyl-cycloheptasiloxane, methyl dodecanoate, tetradecamethyl-cycloheptasiloxane, ethyl dodecanoate, methyl tetradecanoate and dibutyl phthalate.  相似文献   

14.
Co-pyrolysis of pine cone with synthetic polymers   总被引:1,自引:0,他引:1  
Mihai Brebu  Cornelia Vasile 《Fuel》2010,89(8):1911-1918
Biomass from pine cone (Pinus pinea L.) was co-pyrolyzed with synthetic polymers (PE, PP and PS) in order to investigate the effect of biomass and plastic nature on the product yields and quality of pyrolysis oils and chars. The pyrolysis temperature was of 500 °C and it was selected based on results from thermogravimetric analysis of the studied samples. Co-pyrolysis products namely gases, aqueous and tar fraction coming from biomass, oils from synthetic polymers and residual char were collected and analyzed. Due to the synergistic effect in the pyrolysis of the biomass/polymer mixtures, higher amounts of liquid products were obtained compared to theoretical ones. To investigate the effect of biomass content on the co-pyrolysis, the co-pyrolysis of pure cellulose as model natural polymer for biomass with polymer mixture was also carried out. In the presence of cellulose, degradation reaction leading to more gas formation and less char yield was more advanced than in the case of co-pyrolysis with pine cone. Co-pyrolysis gave polar oxygenated compounds distributed between tar and aqueous phase and hydrocarbon oils with composition depending on the type of synthetic polyolefin. Co-pyrolysis chars had higher calorific values compared to pyrolysis of biomass alone.  相似文献   

15.
Liquid-phase catalytic degradation of waste polyolefinic polymers (HDPE, LDPE, PP) over spent fluid catalytic cracking (FCC) catalyst was carried out at atmospheric pressure with a stirred semi-batch operation. The effect of experimental variables, such as catalyst amount, reaction temperature, plastic types and weight ratio of mixed plastic on the yield and accumulative amount distribution of liquid product for catalytic degradation was investigated. The initial rate of catalytic degradation of waste HDPE was linearly increased with catalyst amount (4-12 wt%), while that was exponentially increased with reaction temperature (350-430 ‡C). Spent FCC catalyst in the liquid-phase catalytic degradation of polymer was not deactivated fast. The product distribution from catalytic degradation using spent FCC catalyst strongly depended on the plastic type. The catalytic degradation of mixed plastic (HDPE: LDPE: PP: PS=3: 2: 3: 1) showed lower degradation temperature by about 20 ‡C than that of pure HDPE.  相似文献   

16.
S. Melendi  R. Alvarez  C. Barriocanal 《Fuel》2011,90(4):1431-1438
This study is concerned with the effects of the composition of mixed plastic wastes on the thermoplastic properties of coal, the generation of coking pressure and the quality of the resulting cokes in a movable wall oven at semipilot scale. The mixed plastic wastes were selected to cover a wide spectrum in the relative proportions of high- and low-density polyethylenes (HDPE and LDPE), polypropylene (PP), polystyrene (PS) and polyethylene terephthalate (PET). From the results it was deduced that the reduction in Gieseler fluidity in the coal blend is linked to the total amount of polyolefins in the waste. It was also found that these thermoplastics increase the pressure exerted against the wall in the course of the coking process and that coke quality is maintained or even improved. However, when the level of aromatic polymers such PS and PET are increased at the expense of polyolefins, the coking pressure decreases. Thus, the amount of aromatic polymers such as PS and PET in the waste is critical, not only for controlling Gieseler fluidity and coking pressure, but also for avoiding deterioration in coke quality (reactivity towards CO2CRI and mechanical strength of the partially-gasified coke CSR). An amount of polyolefins in the waste lower than 65 wt.% for a secure coking pressure is established.  相似文献   

17.
Petroleum sulfonate (PS) surfactant used for enhanced oil recovery was synthesized by dilute liquid sulfur trioxide and petroleum fraction (PF) of Shengli crude oil as raw materials with the application of HIGEE process intensification technology. The effects of various experimental conditions on the content of active matter and unsulfonated oil were investigated. The optimum conditions were selected as solvent/oil mass ratio 0.5, SO3/oil mass ratio 0.525, reaction temperature 30 °C, rotating speed 1200 rpm, circulation ratio 4, reaction time 15 min and aging time 50 min under which the active matter content was up to 45.3 wt.% and the oil/water interfacial tension was as low as 4.5 × 10−3 mN/m. The higher product quality and higher process efficiency of this new technology is proven by a comparison with traditional STR process.  相似文献   

18.
A comparison was made of the fineness of dispersion in immiscible polymer blends achieved by a continuous mechanical alloying technique, solid-state shear pulverization, relative to that achieved by melt mixing. Two polymer blend systems were investigated. A polystyrene (PS)/polyethylene (PE) wax blend was studied because, based on a classic analysis by G.I. Taylor, melt mixing was expected to yield a number-average dispersed-phase domain size, Dn, well above 1 μm. A PS/high density polyethylene (HDPE) blend was also studied because it was known to produce a sub-micron number-average dispersed-phase particle size when mixed by twin-screw extrusion. In the case of the PS/PE wax blend at compositions ranging from 1 to 15 wt% polyethylene wax, pulverization resulted in nearly identical Dn values (typical value of 0.7 μm) independent of minor-phase content; these Dn values were an order of magnitude smaller than the anticipated Taylor limit for melt-mixed blends. In contrast, PS/PE wax blends made by batch, intensive melt mixing yielded Dn values between ∼3 μm at both 1 and 5 wt% minor-phase content and 17.5 μm at 15 wt% minor-phase content. The increase in Dn with increasing dispersed-phase content in the melt-mixed blend is a consequence of coalescence present during melt processing; such effects are disallowed in the pulverization process occurring in the solid state. Scanning electron microscopy of a 95/5 wt% PS/HDPE blend provided Dn values of 500 and 270 nm in the twin-screw extruded and pulverized samples, respectively. Fractionated crystallization studies further corroborated the ability of pulverization to result in a finer, nanoscopic dispersion of the minor phase as compared to extrusion.  相似文献   

19.
You Hong Tang  Ping Gao  Lin Ye 《Polymer》2010,51(2):514-521
A small amount (1 wt%) of organoclay-modified thermotropic liquid crystalline polymer (TLCP) acting as a viscosity reduction agent in high molecular mass polyethylene (HMMPE) was characterized and compared with purified TLCP (1 wt%) in HMMPE at 190 °C and 230 °C, respectively, where the TLCP displayed nematic and nematic-isotropic biphase structures. In the TLCP/PE blend at 190 °C and 230 °C, dramatic reductions in viscosity were observed with significant improvement in extrudate surface smoothness and an enlarged processing window. For the organoclay-modified TLCP in PE, the viscosity reduction ability of TLCP was further enhanced with viscosity dropped by up to >98.5% and >97.4% at 190 °C and 230 °C and processing window enlarged to >700 s−1 and >900 s−1 respectively in comparison to that of PE. Moreover, yielding stress, initial transition shear rate and transition region decreased to lower magnitudes than those of the TLCP/PE blend. A phenomenological model was applied to elucidate the mechanism of organoclay, TLCP and PE conformation before and after yielding in the confined capillary environment. A binary flow pattern model was applied to successfully predict the rheological behavior of the blends at 190 °C.  相似文献   

20.
Biodiesel has been synthesized from karanja, mahua and hybrid {karanja and mahua (50:50 v/v)} feedstocks. A high yield in the range of 95-97% was obtained with all the three feedstocks. Conversion of vegetable oil to fatty acid methyl esters was found to be 98.6%, 95.71% and 94% for karanja, mahua and hybrid feedstocks respectively. The optimized reaction parameters were found to be 6:1 (methanol to oil) molar ratio, H2SO4 (1.5% v/v), at 55 ± 0.5 °C for 1 h during acid esterification for the three feedstocks. During alkaline transesterification, a molar ratio of 8:1 (methanol to oil), 0.8 wt.% KOH (wt/wt) at 55 ± 0.5 °C for 1 h was found to be optimum to achieve high yield for karanja oil. For mahua oil and the hybrid feedstock, 6:1 (methanol to oil) molar ratio, 0.75 (w/w) KOH at 55 ± 0.5 °C for 1 h was optimum for alkaline transesterification to obtain a high yield. High yield and conversion from hybrid feedstock during transesterification reaction was an indication that the reaction was not selective for any particular oil. 1H NMR has been used for the determination of conversion of the feedstock to biodiesel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号