首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为研究生物质和煤程序升温共热解特性及相互作用,利用热天平和管式炉反应器对白松木屑和五彩湾烟煤的共热解特性及催化剂对生物质和煤共热解的影响进行了研究,并考察了共热解半焦的孔结构特性。结果表明:不同比例的生物质和煤在共热解过程中,两者基本保持了各自的热解特性,由于生物质和煤的主要热解阶段温度相差较大,共热解过程中没有发生明显的协同作用。生物质和煤共热解半焦产率实验值大于计算值,当生物质质量分数从75%减少至25%时,半焦产率实验值与计算值之间的差值从0.81个百分点增加到1.07个百分点。橄榄石和载镍橄榄石(NiO/olivine)的添加促进了共热解反应发生的深度。载镍橄榄石催化剂添加(原料和催化剂质量比1:1)的条件下,共热解碳转化率提高了0.5%~5.1%,随着混合物中生物质比例的增加,催化剂的催化效果更加明显。  相似文献   

2.
An experimental study on co-pyrolysis of bituminous coal and biomass was performed in a pressured fluidized bed reactor. The blend ratio of biomass in the mixture was varied between 0 and 100 wt%, and the temperature was over a range of 550–650 °C under 1.0 MPa pressure with different atmospheres. On the basis of the individual pyrolysis behavior of bituminous coal and biomass, the influences of the biomass blending ratio, temperature, pressure and atmosphere on the product distribution were investigated. The results indicated that there existed a synergetic effect in the co-pyrolysis of bituminous coal and biomass in this pressured fluidized bed reactor, especially when the condition of bituminous coal and biomass blend ratio of 70:30(w/w), 600 °C, and 0.3 MPa was applied. The addition of biomass influenced the tar and char yields and gas and tar composition during co-pyrolysis. The tar yields were higher than the calculated values from individual pyrolysis of each fuel, and consequently the char yields were lower.The experimental results showed that the composition of the gaseous products was not in accordance with those of their individual fuel. The improvement of composition in tar also indicated synergistic effect in the co-pyrolysis.  相似文献   

3.
Catalytic gasification of char from co-pyrolysis of coal and biomass   总被引:1,自引:0,他引:1  
The catalytic gasification of char from co-pyrolysis of coal and wheat straw was studied. Alkali metal salts, especially potassium salts, are considered as effective catalysts for carbon gasification by steam and CO2, while too expensive for industry application. The herbaceous type of biomass, which has a high content of potassium, may be used as an inexpensive source of catalyst by co-processing with coal. The reactivity of chars from co-pyrolysis of coal and straw was experimentally examined. The chars were prepared in a spout-entrained reactor with different ratios of coal to straw. The gasification characteristics of chars were measured by thermogravimetric analysis (TGA). The co-pyrolysis chars revealed higher gasification reactivity than that of char from coal, especially at high level of carbon conversion. The influence of the alkali in the char and the pyrolysis temperature on the reactivity of co-pyrolysis char was investigated. The experimental results show that the co-pyrolysis char prepared at 750 °C have the highest alkali concentration and reactivity.  相似文献   

4.
利用自制的低温热解装置研究褐煤与大豆荚共热解的产物特性,考察大豆荚掺混比和催化剂Fe2O3对热解产物特性的影响。通过FT-IR、GC-MS、SEM-EDX和UV-vis分析共热解产物的性质,并将半焦用于亚甲基蓝吸附实验。研究结果表明:掺混比30%时,共热解焦油的产率达到最大值11.98%,比煤焦油产率增加44.86%,与计算值的正偏差最大(0.8%),同时,大豆荚的添加有促进焦油生成的协同作用。大豆荚的添加有利于共热解焦油中含氧杂环的断裂,使共热解焦油中直链烷烃增多,芳香族化合物减少,使重质组分转化为轻质组分,从而提高焦油品质;同时,大豆荚的添加使共热解半焦的含氧基团增加,微观形貌变粗糙。而Fe2O3的加入使共热解焦油中酚、醇类物质增加;加Fe2O3共热解半焦的褶皱更加明显。共热解半焦对亚甲基蓝的吸附率为33.62%,比煤半焦的吸附率提高8.84%,加Fe2O3共热解半焦的吸附率为55.57%,比共热解半焦提高65.29%。  相似文献   

5.
Co-pyrolysis of biomass and coal in a free fall reactor   总被引:4,自引:0,他引:4  
Li Zhang  Wei Zhao  Shuqin Liu 《Fuel》2007,86(3):353-359
An experimental study on co-pyrolysis of biomass and coal was performed in a free fall reactor under atmospheric pressure with nitrogen as balance gas. The coal sample selected was Dayan lignite, while the biomass used was legume straw. The operation temperature was over a range of 500-700 °C, and the blending ratio of biomass in mixtures was varied between 0 and 100 wt.%. The results indicated that there exist synergetic effects in the co-pyrolysis of biomass and coal. Under the higher blending ratio conditions, the char yields are lower than the theoretical values calculated on pyrolysis of each individual fuel, and consequently the liquid yields are higher. Moreover, the experimental results showed that the compositions of the gaseous products from blended samples are not all in accordance with those of their parent fuels. The CO2 reactivities of the chars obtained from the co-pyrolysis under the higher blending ratio (around 70 wt.%) conditions are about twice as high as those of coal char alone, even higher than those of biomass alone.  相似文献   

6.
基于生物质焦油氧含量高、品质差的缺陷,本文提出将生物质与重油共转化利用的方法。以催化裂化油浆(FCC)、稻壳(RH)、木屑(PS)为原料,通过低温固定床热解实验对其共热解产物分布进行了研究。结果表明,在FCC的供氢作用下,共热解有利于焦油中含氧化合物的脱除,随着生物质比例增加,反应过程中脱羧基、脱羰基反应减弱,脱羟基反应增强,产物中CO、CO2产率较计算值增加幅度减小,水的产率较计算值逐渐增大。焦油中烃类物质增加,其中芳香烃以二元环和四元环增加为主,脂肪烃中以C13~C20增加为主。整体上,共热解过程促进了半焦产率的增加,焦油产率虽无明显改变但品质得到了显著提升。  相似文献   

7.
基于生物质焦油氧含量高、品质差的缺陷,本文提出将生物质与重油共转化利用的方法。以催化裂化油浆(FCC)、稻壳(RH)、木屑(PS)为原料,通过低温固定床热解实验对其共热解产物分布进行了研究。结果表明,在FCC的供氢作用下,共热解有利于焦油中含氧化合物的脱除,随着生物质比例增加,反应过程中脱羧基、脱羰基反应减弱,脱羟基反应增强,产物中CO、CO2产率较计算值增加幅度减小,水的产率较计算值逐渐增大。焦油中烃类物质增加,其中芳香烃以二元环和四元环增加为主,脂肪烃中以C13~C20增加为主。整体上,共热解过程促进了半焦产率的增加,焦油产率虽无明显改变但品质得到了显著提升。  相似文献   

8.
采用低温干馏装置对不同玉米芯加入量的褐煤/玉米芯混合物进行低温共热解实验。结果表明:当玉米芯加入量为30%时,焦油产率最大为11.70%,比褐煤单独热解提高了53.75%。随着玉米芯的加入量增加,热解气中CO、CH4和H2含量逐渐增大。对热解焦油进行GC-MS检测,发现添加30%玉米芯后脂肪族质量分数从褐煤单独热解的24%提高到了30.67%,酚类质量分数从6.29%提高到了18.49%,杂原子质量分数从29.75%降低到了13.33%,一定程度上实现了焦油的轻质化和高品质化。对热解半焦进行SEM、比表面积分析和热值测定,发现共热解半焦表面变粗糙,孔隙结构得到改善,热值明显高于褐煤单独热解半焦热值。  相似文献   

9.
通过热重分析(TGA)和裂解/气质联用(Py-GC/MS)对杨木/高密度聚乙烯(HDPE)木塑复合材料(WPC)进行热解,考察了木粉和聚烯烃塑料热解过程中的相互作用。结果表明:生物质和塑料热解过程中存在明显的协同作用,杨木在较低的温度下即开始发生热解,其提供的自由基参与了聚烯烃热解反应,产生了更多的轻质烃类产物。而聚烯烃分解产生的碳氢化合物向生物质分解产生的自由基提供氢,促进挥发性物质生成,部分抑制了活性自由基进一步聚合结焦,得到了更多的挥发性产物和减少了固体残炭。  相似文献   

10.
采用热重分析仪和固定床反应器研究了神木烟煤和桦甸油页岩的混合共热解特性及协同作用机制. 结果表明,神木煤与桦甸油页岩混合共热解的失重率高于计算值,表明二者在热解和挥发分逸出过程中存在相互作用,促进了挥发分释放,减少了半焦生成. 煤与油页岩的协同作用可增加热解油收率、降低半焦和水收率. 油页岩与煤质量比为1:1时,所得油收率最高,为9.84%,比计算值提高8.8%. 共热解有助于提高轻质油含量和收率,油页岩与煤质量比为1:4时,轻质油含量超过80%,收率约为7.5%,比计算值分别提高了8%和11.2%,表明添加少量油页岩可明显提高热解油品质. 共热解过程中油页岩产生的富氢组分及自由基能抑制煤热解产生的芳香族化合物的聚合反应,促进芳烃向产物油转化,提高热解油的收率和品质.  相似文献   

11.
12.
Jerzy Szuba  Lech Michalik 《Fuel》1982,61(12):1201-1206
Co-pyrolysis was investigated as a method of upgrading various products resulting from coal processing. Co-pyrolysis of vacuum residue (VR) with coal extraction products as well as with primary tars from flash pyrolysis leads to a considerably enhanced yield of liquid products. It has been established that superheated steam and increased outgassing rate, favour the yield of liquid products. The proportion of the ingredients in the mixture as well as the quality of the VR also have a definite effect. The excess yield of liquid products in co-pyrolysis of coal extraction products was 8–23 wt%, depending on operating conditions and the composition of the mixture. The flash co-pyrolysis of primary tars yielded a 1.5–15.9 wt% surplus of liquid products depending on the mixture composition. Products originating from co-pyrolysis of these raw materials with VR are characterized by relatively high atomic hydrogen to carbon ratio, usually not less than 1.5 and the total abscence of asphaltenes. Generally, co-pyrolysis of VR with various products of coal processing is comparable with hydrogenation in the light of good yields of liquid products.  相似文献   

13.
生物质三组分二元混合热解特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
采用TG-FTIR-MS研究了生物质三组分二元混合热解过程的失重特性和小分子气体逸出规律。结果表明二元混合组分热解过程降低了热解反应开始温度。纤维素与半纤维素混合热解过程热解反应受到抑制,热解失重率降低,H2、CH4和H2O产量减小,CO和CO2产量增加。木质素和半纤维素在混合热解过程中存在协同效应,促进热解反应进行,H2产量增加,然而其他小分子气体产物的生成被抑制,协同效应的效果更有利于可冷凝挥发分产物生成,这种效应随着半纤维素比例增大而减弱。半纤维素和纤维素在整个热解过程表现出相互抑制的效果,其小分子气体产物产量减小,但随着纤维素比例增大,影响减弱。  相似文献   

14.
The structural evolution of the chars from pyrolysis of biomass components(cellulose, hemicellulose and lignin)in a xenon lamp radiation reactor was investigated. The elemental composition analysis showed that the C content increased at the expense of H and O contents during the chars formation. The values of ΔH/C/ΔO/Cfor the formation of cellulose and hemicellulose chars were close to 2, indicating that dehydration was the dominant reaction. Meanwhile, the value was more than 3 for lignin char formation, suggesting that the occurrence of demethoxylation was prevalent. FTIR and XRD analyses further disclosed that the cellulose pyrolysis needed to break down the stable crystal structure prior to the severe depolymerization. As for hemicellulose and lignin pyrolysis, the weak branches and linkages decomposed firstly, followed by the major decomposition. After the devolatilization at the main pyrolysis stage, the three components encountered a slow carbonization process to form condensed aromatic chars. The SEM results showed that the three components underwent different devolatilization behaviors, which induced various surface morphologies of the chars.  相似文献   

15.
综述了近几年来生物质与其它物质如煤和聚合物共热解的研究进展。通过对生物质、煤和聚合物的单独热解以及同煤和其它聚合物共热解的大量文献报道结果进行比较发现:生物质与许多聚合物共热解具有协同作用,可以降低液体产物的含氧量,提高热解液相产率等。显示出生物质与某些聚合物共热解比单独热解具有一定的优势;并比较了煤和生物质共热解产生的现象,得到煤和生物质共热解难以产生协同作用。本文作者结合现阶段的研究成果,提出生物质与煤采用两步法热解工艺的思路,使生物质材料的氢有可能转移到热解煤的产物中,以改善煤热解过程中液体的性质,对今后生物质与煤及聚合物共热解的研究方向提出了自己的建议。  相似文献   

16.
Fast pyrolysis of four kinds of biomass (legume straw, tobacco stalk, pine sawdust and apricot stone) was conducted in a free fall reactor. Interest is focused on hydrogen-rich gas production. The experimental results verify the occurrence of the in-situ steam reforming of tar, the steam gasification of char and the water–gas shift reaction with the primary pyrolysis of the biomass at higher heating rate in the free fall reactor. These reactions influence greatly the products' distribution and dry gas compositions in fast pyrolysis, especially at higher temperature. The pyrolysis is mass and heat transfer controlled for biomass particle size of above 0.20 mm but kinetically controlled in the case of particle size smaller than 0.20 mm. Biomass composed of higher cellulose and hemicellulose favors hydrogen-rich gas production in fast pyrolysis than that composed of higher lignin. The pyrolysis characteristics of each type of biomass can be explained according to its chemical compositions.  相似文献   

17.
Short rotation willow coppice (SRC) and a synthetic biomass, a mixture of the basic biomass components (cellulose, hemicellulose and lignin), have been investigated for the influence of potassium on their pyrolysis behaviours. The willow sample was pre-treated to remove salts and metals by hydrochloric acid, and this demineralised sample was impregnated with potassium. The same type of pre-treatment was applied to components of the synthetic biomass. Characterisation was performed using thermogravimetric analysis with measurement of products by means of Fourier transform infrared spectroscopy (TGA-FTIR) and pyrolysis-gas chromatography-mass spectrometry (PY-GC-MS). A comparison of product distributions and kinetics are reported. While the general features of decomposition of SRC are described well by an additive behaviour of the individual components, there are some differences in the magnitude of the influence of potassium, and on the products produced. For both SRC and the synthetic biomass, TGA traces indicate catalytic promotion of both of the two-stages of biomass decomposition, and potassium can lower the average apparent first-order activation energy for pyrolysis by up to 50 kJ/mol. For both SRC and synthetic biomass the yields and distribution of pyrolysis products have been influenced by the presence of the catalyst. Potassium catalysed pyrolysis increases the char yields markedly and this is more pronounced for synthetic biomass than SRC. Gas evolution profiles during pyrolysis show the same general features for both SRC and synthetic biomass. Relative methane yields increase during the char formation stage of pyrolysis of the potassium doped samples. The evolution profiles of acetic acid and formaldehyde change, and these products are seen in lower relative amounts for both the demineralised samples. A greater variation in pyrolysis products is observed from the treated SRC samples compared to the different synthetic biomass samples. Furthermore, substituted phenols from lignin pyrolysis are more dominant in the pyrolysis profiles of the synthetic biomass than of the SRC, implying that the extracted lignins used in the synthetic biomass yield a greater fraction of monomeric type species than the lignocellulosic cell wall material of SRC. For both types of samples, PY-GS-MS analyses show that potassium has a significant influence on cellulose decomposition markers, not just on the formation of levoglucosan, but also other species from the non-catalysed mechanism, such as 3,4-dihydroxy-3-cyclobutene-1,2-dione.  相似文献   

18.
E Cetin  B Moghtaderi  R Gupta  T.F Wall 《Fuel》2004,83(16):2139-2150
The physical and chemical structure as well as gasification reactivities of chars generated from several biomass species (i.e. pinus radiata, eucalyptus maculata and sugar cane bagasse) were studied to gain insight into the role of heating rate and pressure on the gasification characteristics of biomass chars. Char samples were generated in a suite of reactors including a wire mesh reactor, a tubular reactor, and a drop tube furnace. Scanning electron microscopy analysis, X-ray diffractometry, digital cinematography and surface area analysis were employed to determine the impact of operating conditions on the char structure. The global gasification reactivities of char samples were also determined for a range of pressures between 1 and 20 bar using pressurised thermogravimetric analysis technique. Char reactivities were found to increase with increasing pyrolysis heating rates and decreasing pyrolysis pressure. It was found that under high heating rates the char particles underwent plastic deformation (i.e. melted) developing a structure different to that of the virgin biomass. Pressure was also found to influence the physical and chemical structures of char particles. The difference in the gasification reactivities of biomass chars at pressure was found to correlate well with the effect of pyrolysis pressure on the graphitisation process in the biomass char structure.  相似文献   

19.
The characteristic times of the main intra particle phenomena of wood pyrolysis are discussed to develop a new model of biomass pyrolysis. The model accounts for a simplified multi-step chemical decomposition with the formation of tars at liquid phase inside the particle. The tars at liquid phase are then competitively converted into a secondary char and gases and evaporated following a Clausius–Clapeyron law. To our knowledge, a tar evaporation law had so far never been coupled with cellulose pyrolysis kinetics. The convective mass transport of all the volatile species through the porous particle is modelled by a Darcy's law. This model offers a first approach to simulate the tar (at liquid phase) life time and its intra-particle conversion. The Clausius–Clapeyron evaporation parameters are reviewed and modified if levoglucosan or cellobiosan are supposed as the main tar compounds at liquid phase. The effects of these parameters on cellulose pyrolysis mass loss rate are modelled and discussed. Mass transfer limitations can lead to a high intra-particle over-pressure and can control the life time of tar at liquid phase and the subsequent “secondary” char formation from the liquid tar conversion.  相似文献   

20.
Co-pyrolysis of wood biomass and waste tire with such catalysts as SBA-15, MCM-41 and HZSM-5 was carried out in a fixed-bed reactor. The influences of the mixture composition on liquid yield and characteristics of the oil were investigated. The properties of the oil were determined by gel permeation chromatograph (GPC), elemental analyzer (EA), thermal analyzer (TA), densimeter, ubbelohde viscosimeter and compared with that of diesel oil 0#. The contents of the polycyclic aromatic hydrocarbons (PAHs) in the oils were also determined by gas chromatograph (GC). The result shows that co-pyrolysis is in favor of inhibiting the formation of polycyclic aromatic hydrocarbons (PAHs) produced from tire. There exist a hydrogen transfer and a synthetic effect during co-pyrolysis of the biomass and tire. They improve the quality of the oil. SBA-15 as a catalyst is more significant than MCM-41 or HZSM-5 for reducing the density and viscosity of the oil and it can effectively decompose some large molecular compounds into small ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号