首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A comparative study of the turbulent Inverse Diffusion Flame (IDF) in recessed coaxial and backstep burners is carried out, based on visible flame appearance, flame length, flame stability, centerline temperature distribution, centerline oxygen concentration, and NO x emissions. The backstep burner is observed to produce a compact flame shape with less luminosity at a higher air-fuel velocity ratio, as compared to the coaxial burner. Moreover, slightly better thermal characteristics and marginal reduction in NO x emissions are provided by the backstep IDF, as compared to the recessed coaxial IDF. Besides this, the centerline oxygen concentration is marginally increased in the backstep IDF due to higher entrainment of ambient air. Interestingly, a lower flame stability limit is seen in the backstep burner than in the coaxial IDF, which can be attributed to its enhanced fuel-air mixing.  相似文献   

2.
S. Mahesh 《Fuel》2008,87(12):2614-2619
The stability characteristics and emissions from turbulent LPG inverse diffusion flame (IDF) in a backstep burner are reported in this paper. The blow-off velocity of turbulent LPG IDF is observed to increase monotonically with fuel jet velocity. In contrast to normal diffusion flames (NDF), the flame in the present IDF burner gets blown out without getting lifted-off from the burner surface. The soot free length fraction, SFLF, defined as the ratio of visible premixing length, Hp, to visible flame length, Hf, is used for qualitative estimation of soot reduction in this IDF burner. The SFLF is found to increase with central air jet velocity indicating the occurrence of extended premixing zone in the vicinity of flame base. Interestingly, the soot free length fraction (SFLF) is found to be correlated well with the newly devised parameter, global momentum ratio. The peak value of EINOX happens to occur closer to stoichiometric overall equivalence ratio.  相似文献   

3.
Munki Kim  Youngbin Yoon 《Fuel》2011,90(8):2624-2629
The effect of fuel composition on flame length was studied in a non-premixed turbulent diluted hydrogen jet with coaxial air. Because coaxial air entrained in a fuel stream enhances the mixing rate of fuel and air, it substantially reduces flame length. The observed flame length was expressed as a function of the ratio of coaxial air to fuel jet velocity and compared with a theoretical prediction based on the velocity ratio. Four cases of fuel mixed by volume were determined: 100% H2, 80% H2/20% N2, 80% H2/20% CO2, and 80% H2/20% CH4. In addition, fuel jet air velocity and coaxial air velocity were varied in an attached flame region as uF = 86-309 m/s and uA = 7-14 m/s. In this study, we derived a scaling correlation for predicting the flame length in a simple jet with coaxial air using the effective jet diameter in a near-field concept. The experimental results showed that the visible flame length was in good relation to the theoretical prediction. The scaling analysis is also valid for diluted hydrogen jet flames with varied fuel composition, which affects flame length by varying the density of the fuel.  相似文献   

4.
带侧边微孔射流扰动火焰结构特性   总被引:2,自引:0,他引:2  
In this paper, an innovative jet lifted flame with side micro-jets has been proposed and its effects on the flame structure have also been investigated. Due to the changes of the initial combustion conditions, mixing and aerodynamics which resulted from the perturbation of the side micro-jets, such a lifted jet flame has different flame structure compared with the common premixed flame. Results demonstrate that use of the micro-jets can control, to a certain extent, the flame structure, including the flame length, lift-off distance and blow-off limit. With the same fuel and air flow rate, the flame length with the side micro-jets will decrease about 5%-40% as the air volume ratio α increases from 58%-76%. Compared with the common diffusion flame, the jet flame with the side micro-jets demonstrates to be easier to be a momentum-dominated flame. The flame length with 2 micro-jets is about 5% less than with 6 micro-jets under the same fuel and air flow rate. With the same α, the fewer number of the controlled jets lead to the flame with relatively shorter length, not easier to be blown off and higher NOx emission. With cer-tain fuel flow rate, the critical air volume ratio is largest for the flame with 3 micro-jets, which is more difficult to be blown off than the cases with 2, 4 or 6 micro-jets.  相似文献   

5.
This paper studies the effect of propane–air mixture composition on the spontaneous structure of an inverted vortex flame during combustion of a gas injected to the lower surface of a plate inclined to the horizon. It has been established that the angular velocity of combustion products is determined by the orientation of the gas injection velocity vector with respect to the gravity direction, the velocity in the burner nozzle, and the fuel mixture composition. It has been shown that fuel composition changes cause restructuring of the velocity field in the vortex structure, which leads to concentration and temperature changes in the flame. Dependences of flame height and fuel combustion completeness on injectionrate and propane content are obtained.  相似文献   

6.
对甲烷/富氧同轴射流扩散火焰燃烧条件下氧化剂流速对NOx排放的影响进行了实验研究. 通过对火焰径向温度分布、火焰形态以及喷嘴出口附近扩散燃烧的流场的观测,分析了不同条件下NOx的生成特性. 结果显示,在保持氧化剂流量不变的条件下,NOx排放指数EINOx随氧化剂流速的增加而减小,在保持氧浓度及过量空气系数不变的条件下,小火焰有利于保持较低的EINOx.  相似文献   

7.
在液化气与空气燃烧的层流火焰两侧施加放电磁场,测定磁场强度,采用双铂铑热电偶和综合烟气分析仪检测层流自由射流火焰温度和NO浓度,分析了不同磁场强度下层流自由射流火焰特性和NO生成特性. 结果表明,在电磁场作用下火焰长度变短,火焰下部直径增大;随磁场强度增大,火焰面下部温度提高. 电磁场可减少火焰中N, HCN, CN等离子和离子团与氧的碰撞几率,导致NO浓度降低,最大下降值为4.26 mg/m3,最大降幅为78.60%.  相似文献   

8.
利用碳氢燃烧实验台,研究了二氧化碳和富氧空气对甲烷、乙烯层流燃烧火焰的特性影响,分析了不同气氛下火焰结构特性和温度分布规律. 结果表明,随氧浓度从21%增加到50%(j),甲烷、乙烯火焰高度下降70%,火焰温度和亮度同时增加,且发光区域呈向下收缩趋势;相同氧浓度下,乙烯火焰亮度高于甲烷. 随CO2浓度由0增加到20%(j),火焰高度增加28%,各高度处火焰边缘温度平均下降290℃,中心温度平均下降132℃. 火焰亮度降低,由黄色变为暗黄色,底部亮度更低,CO2浓度超过20%(j)后,火焰出现悬浮状态,最终被吹熄.  相似文献   

9.
A. Palacios  J. Casal 《Fuel》2011,90(2):824-833
Experiments were carried out on relatively large vertical propane sonic and subsonic exit velocity jet fires (up to approximately 10 m in length and 1.5 m in width). The main geometrical features of jet fires (flame shape, length and width) were determined by analyzing infrared images. From the observations of visible and infrared images, the flame boundary was defined as that corresponding to a temperature of 800 K. Results were compared with the shapes proposed in previous research projects. In the present study, data for sonic and subsonic exit velocity flames indicated that a cylindrical shape could accurately describe the shape of a vertical propane jet fire in still air. The length of such a cylindrical jet fire was the radiant flame length and the equivalent diameter was that corresponding to a volume equal to that surrounded by the aforementioned boundary. The ratio of flame length to diameter was found to be 7. Expressions are proposed to predict the values of jet flame length and width as a function of orifice exit diameter and Reynolds number.  相似文献   

10.
高压燃气储罐泄漏极易诱发喷射火。通过搭建储罐壁面限制条件下不同喷射角度的喷射火实验装置,对近喷口流场受限的喷射火进行了系统研究,并验证了装置测试的可重复性。实验结果表明,储罐壁面限制条件下推举高度小于自由射流的推举高度,并通过数值模拟分析了两种空间条件下空气卷吸流场的差异性,从而物理解释了储罐壁面限制条件对推举高度的影响。两种空间条件下火焰长度都随喷射角度的增加而减小,但自由垂直射流的火焰长度小于储罐壁面限制条件下的火焰长度。火焰行为由浮力控制转为动量控制的临界Froude数与喷射角度和空间限制条件无关。研究还发现,与自由射流相比,储罐壁面的阻塞效应会降低火焰的推举速度,提高火焰的吹熄速度。  相似文献   

11.
Xiao Jin  Huang Zhen  Qiao Xinqi  Hou Yuchun 《Fuel》2008,87(3):395-404
This paper is concerned with an experimental study of the jet diffusion flame characteristics of fuel containing CO2. Using diesel fuel containing dissolved CO2 gas, experiments were performed under atmospheric conditions with a diesel hole-type nozzle of 0.19 mm orifice diameter at constant injection pressure. In this study, four different CO2 mass fraction in diesel fuel such as 3.13%, 7.18%, 12.33% and 17.82% were used to study the effect of CO2 concentration on the jet flame characteristics. Jet flame characteristics were measured by direct photography, meanwhile the image colorimetry is used to assess the qualitative features of jet flame temperature. Experimental results show that the CO2 gas dilution effect and the atomization effect have a great influence on the flame structure and average temperature. When the injection pressure of diesel fuel increased from 4 MPa to 6 MPa, the low temperature flame length increased from 18.4 cm to 21.7 cm and the full temperature flame length decreased from 147.6 cm to 134.7 cm. With the increase of CO2 gas dissolved in the diesel fuel, the jet flame full length decreased for the jet atomization being improved greatly meanwhile the low temperature flame length increased for the CO2 gas dilution effect; with the increase of CO2 gas dissolved in the diesel fuel, the average temperature of flame increases firstly and then falls. Experimental results validate that higher injection pressure will improve jet atomization and then increased the flame average temperature.  相似文献   

12.
A numerical study on premixed methane/ethylene/air flames with various ethylene fractions and equivalence ratios was conducted at room temperature and atmospheric pressure. The effects of ethylene addition on laminar burning velocity, flame structure and flame stability under the condition of lean burning were investigated. The results show that the laminar burning velocity increases with ethylene fraction, especially at a large equivalence ratio. More ethylene addition gives rise to higher concentrations of H, O and OH radicals in the flame, which significantly promotes chemical reactions, and a linear correlation exists between the laminar burning velocity and the maximum H + OH concentration in the reaction zone. With the increase of ethylene fraction, the adiabatic flame temperature is raised, while the inner layer temperature becomes lower, contributing to the enhancement of combustion. Markstein length and Markstein number, representative of the flame stability, increase as more ethylene is added, indicating the tendency of flame stability to improve with ethylene addition.  相似文献   

13.
张鑫  陈隆 《洁净煤技术》2020,26(2):66-72
高速煤粉燃烧器火焰喷射速度高达60~200 m/s,炉膛内火焰较长,对流换热比例提高,使得炉膛内温度分布均匀,没有传统低速煤粉燃烧器火焰短,炉膛内局部过热和结焦等缺点。笔者以14 MW高速煤粉燃烧器为研究对象,采用数值模拟的方法,研究旋流强度、二次风温度等关键参数对燃烧器内煤粉燃烧的影响,针对燃烧器内煤粉燃烧特点进行结构优化设计。对旋流强度研究结果表明,当旋流强度S=2.2、2.8、3.2及3.7时,燃烧器内回流区形状变化不大,从一次风喷口开始到旋流叶片位置结束,回流区环绕一次风管;最大回流量在一次风喷口附近,距离一次风喷口越远,回流量越小;旋流强度对一次风喷口附近最大回流量影响不大,喷口附近最大回流量均在0.45 kg/s左右,当距喷口超过一定距离(L/H<0.35)时,旋流强度对回流量的影响开始变得明显,表现为旋流强度越大,回流区末端回流量越大,回流区末端回流量最大为0.30 kg/s,最小为0.17 kg/s。研究燃烧器喷口处燃烧状态表明,喷口处火焰旋流强度为0.10~0.28,与入口旋流强度正相关,火焰喷射速度150 m/s,为中等旋流强度的高速旋流火焰;喷口中心区可燃性组分富集,缺氧,燃料和氧气分层分布。当旋流强度提高,喷口中心区可燃性组分浓度降低,CO浓度从11%降低到10%,H2浓度从1.65%降低到1.40%,焦炭浓度从0. 14%降低到0. 11%,喷口边缘O2浓度从13%降低到10%。旋流强度S=3.2和S=3.7时可燃组分和氧气浓度分布变化较小,说明旋流强度提高对燃烧的影响减弱。考察0、100和200℃下二次风温度对燃烧的影响,结果表明,当二次风温度提高,煤粉在燃烧器内的反应时间有所降低,从0.15 s降低到0.11 s,但燃烧器内的煤粉碳转化率提高20%,达到65%。对燃烧器结构进行优化,加入中心风,对比中心风直流和旋流与不加中心风3种状态,结果表明,加入旋流中心风和直流中心风后喷口中心区半径r≤75 mm范围内可燃组分浓度降低,采用直流时由于气流刚性较强,喷口中心区氧气浓度升高,采用旋流中心风对中心区氧浓度影响弱,对可燃组分浓度降低效果优于直流中心风。  相似文献   

14.
D.P. Mishra  P. Kumar 《Fuel》2008,87(13-14):3091-3095
This paper presents an experimental investigation of the effect of H2 addition on flame length, soot free length fraction (SFLF), flame radiant fraction, gas temperature and emission level in LPG–H2 composite fuel jet diffusion flame for two preheated cases namely, (i) preheated air and (ii) preheated air and fuel. Results show that the H2 addition leads to a reduction in flame length which may be caused due to an increased gas temperature. Besides this, the flame length is also observed to be reduced with increasing reactants temperature. The soot free length fraction (SFLF) increases as H2 is added to fuel stream. This might have been caused by decrease in the C/H ratio in the flame and is favorable to attenuate PAH formation rate. Interestingly, the SFLF is observed to be reduced with increasing reactants temperature that may be due to reduction in induction period of soot formation caused by enhanced flame temperature. Moreover, the decreased radiant heat fraction with hydrogen addition is pertinent with the reduction in soot concentration level. The reduction in NOx emission level with H2 addition to the fuel stream is also observed. On the contrary, NOx emission level is found to be enhanced significantly with reactant temperature that can be attributed to the increase in thermal NOx through Zeldovich mechanism.  相似文献   

15.
16.
逆向射流燃烧技术是可同时适用于燃气和燃煤领域的高效低污染燃烧技术,逆喷结构和射流流速比决定了其流场特性。笔者综述了逆向射流燃烧技术在燃气和燃煤领域的发展历史、研究现状和发展趋势。在燃气领域,逆向射流主要起稳定火焰作用,具有良好的燃料-空气混合条件,形成一个近似均匀的热流场,避免燃烧过程中出现局部热点,但目前仅为一种为燃气轮机和飞机发动机提供的探索性技术,工程应用还需克服燃料和空气在一个狭小空间里的流场合理控制以及从简化装置到工程放大等问题。在燃煤领域,对于煤粉燃烧器,逆向射流可形成一个可控组分、大小、形状和位置的回流区,且将煤粉直接送进回流区,还可控制煤粉在回流区内的停留时间,该技术与传统火焰稳定方式相比,火焰稳定能力更强、停留时间更长、污染更低,更适用于低阶煤的高效燃烧,目前,逆向射流燃烧技术耦合其他稳燃、低氮技术为煤粉高效清洁利用发展提供了新方向,且已有实际工程应用,但对于其机理研究不够深入,限制了其进一步发展与推广。对于电站锅炉,部分一次风或燃尽风逆向偏转射入炉内,可缓解四角切圆燃烧方式下炉膛出口烟气的烟速和烟温偏差,目前主要是燃尽风反切的工业应用,但如何合理控制燃尽风反切角度、反切动量以及反切层数等关键问题还需进一步研究。  相似文献   

17.
The present paper reports the effects of N2 addition and preheating of reactants on bluff-body stabilized coaxial LPG jet diffusion flame for two cases, namely, (I) preheated air and (II) preheated air and fuel. Experimental results confirm that N2 addition to the fuel stream leads to an enhancement in flame length, which may be attributed to the reduction in flame temperature. The soot free length fraction (SFLF) also increases, which might be caused by the decrease in fuel concentration and flame temperature. The flame length and also the SFLF are observed to be reduced with increasing temperature of reactants and lip thickness of the bluff body. The NO x emission level for all burner configurations are found to be attenuated with nitrogen addition, which can be attributed to the reduction of the residence time of the gas mixture in the flame. The emission index of NO x (EINO x ) also becomes enhanced with increasing lip thickness and reactant temperature due to an increased residence time and thermal effect, respectively. __________ Translated from Fizika Goreniya i Vzryva, Vol. 45, No. 1, pp. 3–10, January–February, 2009.  相似文献   

18.
The cargo compartment of an airplane in flight is a complex environment with dynamic pressure (pressurization and depressurization), nonconservative oxygen, and unidirectional ventilation. In this study, n‐heptane pool fires were performed under static pressure, pressurization, and depressurization in a full‐scale airplane cargo compartment. The static pressure included 30 and 90 kPa, the pressurization was from 30 to 90 kPa at rates of 6, 12, 19, and 25 kPa/min, while the depressurization was from 90 to 30 kPa at rates of 6, 12, 17, and 20 kPa/min. The effects of pressure, oxygen concentration, and ventilation on pool fire characteristics including fuel mass loss rate (MLR), flame centerline temperature, and flame shape under each condition were concluded. The results show that the predominant factor of MLR was different in three conditions. The flame is divided into four regimes, in which the fuel vapor regime is used to emphasize the influence of fuel vapor on flame temperature above the fuel surface. The concept of average flame shape is put forward to reflect the flame occurrence probability. And its bottom, which named average flame root, presents the negative correlation with compartment pressure.  相似文献   

19.
用骨架反应机理对同轴管甲烷逆流燃烧器进行分析能够很好地了解火焰结构与燃烧器内的温度分布,并得到各处的火焰拉伸率及相关参数。随着空气流量(QA)的增加,火焰形状由扁平型变化为弯曲型,并逐渐将内管管口包覆,火焰厚度逐渐减小。当量比(ER)较大时,火焰附近温度与物质的分布较为稀疏,而ER较小时,其分布较为紧密。内管壁面上热通量Hf随着的QA增加而逐渐加强;总的传热量H在QA=2540 ml·min-1达到最大。当ER≥3.00时,火焰拉伸率κ开始时缓慢变化,在越过燃烧器内管边缘后快速增加,但最终不大于65 s-1。在ER<1.00时,火焰呈弯曲状,长度较长,κ值变化剧烈,最大可以达到638 s-1,并在火焰末端κ值变为负数,最小值为-262 s-1。  相似文献   

20.
Results of an experimental study of hydrodynamics and diffusion combustion of hydrocarbon jets are presented. Various regimes of instability development both in the jet flame proper and inside the source of the fuel jet are considered. The experiments are performed for the case of subsonic gas jet expansion into the air from a long tube 3.2 mm in diameter in the range of Reynolds numbers from 200 to 13 500. The fuel is the propane–butane mixture in experiments with a cold jet (without combustion) and pure propane or propane mixed with an inert dilutant (CO2 or He) for the jet flame. The mean velocity and velocity fluctuations in the near field of the jet without combustion are measured. Among four possible regimes of cold jet expansion (dissipative, laminar, transitional, and turbulent), three last regimes are investigated. The Hilbert visualization of the reacting flow is performed. The temperature profiles in the near field of the jet are measured by a Pt/Pt–Rh thermocouple. An attached laminar flame is observed in the transitional regime of propane jet expansion from the tube. In the case of combustion of C3H8 mixtures with CO2 or with He in the range of Reynolds numbers from 1900 to 3500, the transitional regime is detected in the lifted flame. Turbulent spots formed in the tube in the transitional regime exert a significant effect on the flame front position: they can either initiate a transition to a turbulent flame or lead to its laminarization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号