首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
锂离子电池是一个复杂的电化学动态系统,难以通过单一的监测电池内部的物理和化学特性实现健康状态(state of health,SOH)在线估算。为此提出以欧姆内阻增加量、极化内阻增加量和极化电容减少量作为电池的健康因子(health indicator,HI),并引入灰色神经网络离线训练以HI为输入,电池容量退化量为输出的灰色神经网络模型,最后通过在线构建电池HI实现电池SOH估算。实验结果表明所提出的HI能够有效表征电池健康状态,灰色神经网络模型与BP神经网络模型相比,具有更高的SOH在线估算精度,估算误差不超过2%。  相似文献   

2.
针对传统BP神经网络在线估算锂离子电池健康状态(state of health,SOH)容易使权值陷入局部最优解,导致SOH预测不精确。结合模拟退火(simulate anneal,SA)算法能有效收敛于全局最优的特点,提出一种基于SA算法优化BP神经网络的锂离子电池SOH在线预测方法。以锂离子电池为研究对象,分析了微分电压、欧姆内阻、循环次数与电池SOH的关系,并以此作为电池的健康状态因子(health indicator,HI)输入至BP神经网络。利用SA算法优化BP神经网络的权值,使预测模型得到最优解。实验结果表明:利用优化算法对电池SOH进行预测,其最大误差仅为1.98%,平均误差为1.09%。相较于传统BP神经网络,优化算法预测最大误差降低了5.62%,平均误差降低2.33%。从而验证了基于SA算法优化BP神经网络能够获取全局最优值并提高电池SOH估算精度是有效的。  相似文献   

3.
基于深度学习的锂离子电池SOC和SOH联合估算   总被引:2,自引:0,他引:2  
锂离子电池常被作为储能元件以实现电能的存储和转化,然而其荷电状态(state of charge,SOC)和健康状态(state of health,SOH)无法被直接测量。为了实现锂离子电池SOC和SOH联合估算,该文分析SOC和SOH之间的关联性,并提出一种基于深度学习的锂离子电池SOC和SOH联合估算方法。该方法能够基于门控循环单元循环神经网络(recurrent neural network with gated recurrent unit,GRU-RNN)和卷积神经网络(convolutional neural network,CNN),利用锂离子电池电压、电流、温度,实现锂离子电池全使用周期内SOC和SOH的同时估算,而且由于将锂离子电池的SOH估算值考虑到SOC估算中,能够消除锂离子电池老化因素对锂离子电池SOC估算造成的负面影响,从而提升SOC估算精度。两个锂离子电池测试数据集上的实验结果表明,提出的估算方法能够在不同温度和不同工况下实现锂离子电池全使用周期SOC和SOH联合估算,且获得较高的精度。  相似文献   

4.
锂离子电池健康状态(SOH)是锂离子电池可靠运行的重要参考指标,为提高电池健康状态检测的精确性,提出一种基于CNN-BiLSTM网络的锂电池健康状态检测方法。该方法使用CALCE锂离子电池容量衰减数据集,提取电池健康因子(HI)作为模型输入数据,同时利用灰色关联分析法(GRA)验证HI选取的合理性,采用卷积神经网络(CNN)、双向长短期记忆神经网络(BiLSTM)构建网络模型,对电池容量进行预测,实现锂离子电池健康状态检测。实验结果表明,该方法SOH检测的平均绝对误差为1.3%,均方根误差为1.78%,精确度和可靠性较高。  相似文献   

5.
锂离子电池的健康状态(SOH)估算对电动汽车的稳定安全运行十分重要,是提前预知电池寿命保障系统正常运行,避免灾难性事故发生的关键之一。针对目前健康因子(HI)构建复杂以及现有SOH估算方法模型参数多且复杂、耗时长等问题,提出了利用可直接测量的电池恒流充电时间和放电电压样本熵作为HIs表征电池的容量退化,降低HI构建的复杂度。引入分层极限学习机(HELM)模型建立SOH在线估算框架,以所构建的两种新HIs作为输入,离线训练HELM电池退化模型实现SOH在线估算。采用美国宇航局(NASA)、牛津大学(Oxford)公开数据集与自测数据集验证所提出的HELM框架对三元锂电池和钴酸锂电池SOH估算的有效性。训练样本和估算样本在相同温度条件下,最大绝对误差不超过1.05%,SOH估算精度较高;当温度条件和电池类型不同时,最大绝对误差不超过2.1%,表明该SOH估算框架具有较好的泛化性与迁移性。  相似文献   

6.
针对锂离子电池健康状态(SOH)估算精度低、传统遗传算法(GA)易陷入局部最优、收敛速度慢的问题,为提高锂电池健康状态的估算精度,提出了交叉概率和变异概率自适应的调整策略对传统GA进行改进,在改进遗传算法(IGA)的作用下,使优良个体仍保持较好的进化能力,算法初期搜索范围、后期局部搜索能力以及收敛速度也得到加强。提取间接健康因子,再用改进的遗传算法对BP神经网络的初始参数寻优得到IGA-BP神经网络模型,基于NASA锂电池数据集分别用GA-BP与IGA-BP神经网络算法对SOH进行估算。结果表明:IGA-BP神经网络算法估算精度更高,且具备快速收敛的优势,平均绝对百分比误差和均方根误差分别下降了0.422%和0.412,拟合程度提高了8.1%。  相似文献   

7.
锂离子电池健康状态(SOH)的准确预测能够保障电池安全稳定的运行。针对目前SOH预测模型准确性不高的问题,提出了一种改进粒子群优化算法(IPSOVP)和极限学习机(ELM)的SOH预测模型。首先,对电池数据进行分析,选择能够映射SOH变化趋势的健康特征;然后,采用Pearson相关系数分析法选出与SOH具有极高相关性的3个健康特征作为模型的输入,SOH作为输出;利用IPSOVP算法对ELM进行优化,建立IPSOVP-ELM模型进行SOH预测;最后,利用NASA电池数据集对IPSOVP-ELM模型进行验证,并与ELM模型、PSO-ELM模型、反向神经网络(BP)以及长短期记忆网络(LSTM)模型进行比较。实验结果表明,IPSOVP-ELM模型误差稳定在2%以内,具有更高的预测精度和鲁棒性,性能更好。  相似文献   

8.
采用萤火虫算法(FA)优化BP神经网络对锂离子电池进行健康状态(SOH)估算,利用FA算法全局寻优的能力和收敛速度快的特点,优化BP神经网络的权值和阈值,解决BP神经网络容易陷入局部最小值和收敛速度慢的问题.对单体磷酸铁锂正极锂离子电池进行充放电实验,选用一阶RC电路模型,利用递推最小二乘法在线辨识模型参数,将电池的欧...  相似文献   

9.
本文针对车用锂离子动力电池容量估算方法精度不高的问题,提出了一种利用遗传算法优化BP神经网络的锂离子电池剩余容量估算方法。首先在整理NASA锂离子电池数据集后,得到不同健康状态下电池的容量增量曲线峰值。其次将健康因子进行主成分分析对其降维处理,利用遗传算法优化BP神经网络的连接权值,对锂离子电池容量进行预测。最后在NASA不同型号的电池上应用模型进行了验证。结果表明,所提出的方法可以在不同训练量的情况下准确估算4种锂离子电池的容量,其估算的方均根误差小于2%,且与未使用遗传算法优化的预测结果相比,该方法具有较高的预测精度。  相似文献   

10.
锂离子电池健康状态(state of health,SOH)是电池管理系统的重要参数。精确的SOH估算可以提供故障和老化更换预警,保证储能电站的安全稳定运行。选取充电平均电流、放电平均电压与放电平均温度作为输入特征,结合卷积神经网络(convolutional neural networks,CNN)和双向长短期记忆网络(bi-directional long short-term memory,Bi-LSTM),提出基于CNN-Bi-LSTM的锂离子电池SOH在线估算方法。该方法通过CNN自动提取输入网格数据的空间特征,输入数据获取方便,无须储存大量数据。继而利用Bi-LSTM充分挖掘电池老化过程中的时序特征,最终实现精确SOH估算。美国国家航空航天局(national aeronautics and space administration,NASA)电池老化数据集上的测试结果表明,所提方法估算SOH的平均绝对误差与均方根误差分别低于1.07和1.32,精度优于Bi-LSTM和CNN-LSTM两种方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号