首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experimental investigations on butt welding of magnesium alloy to steel by hybrid laser–tungsten inert gas (TIG) welding with Cu–Zn alloy interlayer are carried out. The results show that the gradient thermal distribution of hybrid laser–TIG welding, controlled by offset adjustment, has a noticeable effect on mechanical properties and microstructure of the joints. Particularly, at the offset of 0.2 mm, defect-free joints are obtained, and the tensile strength could attain a maximum value of 203 MPa. Moreover, the fracture of the joint with the 0.2 mm offset happens in the weld seam of Mg alloy instead of the Mg/Fe interface. Owning to the addition of the Cu–Zn alloy interlayer, a metallurgical bonding between Mg alloy and steel is achieved based on the formation of intermetallic compounds of CuMgZn and solid solutions of Cu and Al in Fe. Meanwhile, the same element distribution tendency of Fe and Al indicates the intimate interaction between Fe and Al in current experimental conditions.  相似文献   

2.
A new composite processing technology characterized by hot-dip Zn–Al alloy process was developed to achieve a sound metallurgical bonding between Al–7 wt% Si alloy (or pure Al) castings and low-carbon steel inserts, and the variations of microstructure and property of the bonding zone were investigated under high-pressure torsion (HPT). During hot-dipping in a Zn–2.2 wt% Al alloy bath, a thick Al5Fe2Znx phase layer was formed on the steel surface and retarded the formation of Fe–Zn compound layers, resulting in the formation of a dispersed Al3FeZnx phase in zinc coating. During the composite casting process, complex interface reactions were observed for the Al–Fe–Si–Zn (or Al–Fe–Zn) phases formation in the interfacial bonding zone of Al–Si alloy (or Al)/galvanized steel reaction couple. In addition, the results show that the HPT process generates a number of cracks in the Al–Fe phase layers (consisting of Al5Fe2 and Al3Fe phases) of the Al/aluminized steel interface. Unexpectedly, the Al/galvanized steel interface zone shows a good plastic property. Beside the Al/galvanized steel interface zone, the microhardnesses of both the interface zone and substrates increased after the HPT process.  相似文献   

3.
A laser welding–brazing (LWB) technology using Mg based filler has been developed for joining Mg alloy to mild steel and Mg alloy to stainless steel in a lap configuration. Microstructure and mechanical properties of laser welded–brazed lap joints in both cases were comparatively studied. The results indicated that no distinct reaction layer was observed at the interface of Mg/mild steel and subsequently the interface was confirmed as mechanical bonding, whereas an ultra thin reaction layer with a continuous and uniform morphology was evidenced at the Mg/stainless steel interface, which was indicative of metallurgical bonding. The newly formed interfacial layer was indexed as FeAl phase by transmission electron microscopy (TEM) combined with energy dispersive spectroscopy (EDS). The average tensile–shear strength of Mg/mild steel joint was only 142 N/mm with typical interfacial failure, while that of Mg/stainless steel joint could reach 270 N/mm, representing 82.4% joint efficiency relative to the Mg alloy base metal. The fracture location of Mg/stainless steel joint was at Mg fusion welding side, suggesting the interface was not weak point due to the formation of ultra thin interfacial layer. The role of alloying elements in base metal and bonding mechanism of the interfacial layer were discussed, respectively.  相似文献   

4.
A novel weld-bonding hybrid process is carried out to join Mg alloy and Al alloy, and the technology combines a modified metal inert gas (MIG) spot welding process with adhesive bonding. The Mg base metal and the fusion zone are metallurgical connected by an Al–Mg transition layer with the thickness of 30–60 μm. Single nugget of spot welded joint can offer high shear strength of 130 MPa, which reach 81% of that of Mg base metal. The increased strength is due to the intermetallic layer being formed at the region with low stress, so the joint fractures in an Al-rich dendritic region. Superior mechanical properties can be obtained by weld bonded joint, benefiting from the advantages of both welding and adhesive bonding.  相似文献   

5.
Dissimilar metals of AA6013 aluminum alloy and Q235 low-carbon steel of 2.5 mm thickness were butt joined using a 10 kW fiber laser welding system with ER4043 filler metal. The study indicates that it is feasible to join aluminum alloy to steel by butt joints when zinc layer was hot-dip galvanized at the steel’s groove face in advance, and better weld appearance can be obtained at appropriate welding parameters. The joints had dual characteristics of a welding joint on the aluminum side and a brazing joint on the steel side. The smooth Fe2Al5 layer adjacent to the steel matrix and the serrated-shape FeAl3 layer close to the weld metal were formed at the brazing interface. The overall thickness of Fe–Al intermetallic compounds layers produced in this experiment were varied from 1.8 μm to 6.2 μm at various welding parameters with laser power of 2.85–3.05 kW and wire feed speed of 5–7 m/min. The Al/steel butt joints were failed at the brazing interface during the tensile test and reached the maximum tensile strength of 120 MPa.  相似文献   

6.
TLP diffusion bonding of two dissimilar aerospace alloys, Ti–6Al–4V and Al7075, was carried out at 500 °C using 22 μm thick Cu interlayers for various bonding times. Joint formation was attributed to the solid-state diffusion of Cu into the Ti alloy and Al7075 alloy followed by eutectic formation and isothermal solidification along the Cu/Al7075 interface. Examination of the joint region using SEM, EDS and XPS showed the formation of eutectic phases such as, ?(Al2Cu), T(Al2Mg3Zn3) and Al13Fe along grain boundaries within the Al7075 matrix. At the Cu/Ti alloy bond interface a solid-state bond formed resulting in a Cu3Ti2 phase formation along this interface. The joint region homogenized with increasing bonding time and gave the highest bond strength of 19.5 MPa after a bonding time of 30 min.  相似文献   

7.
A novel technology was developed for the arc spot welding of AZ31 Mg alloy to Q235 steel with Cu as interlayer. The mechanisms of bonding dissimilar materials were investigated using mechanical and metallurgical examinations. Results show that the joining of Mg alloy to steel with Cu involved two bonding mechanisms: weld-brazing by the Cu transition layer at the interface edge and bonding by a micron-scale composite transition layer of Al3Cu4Fe3 and Fe4Cu3 intermetallic phases at the interface center. The additional reaction of Cu increased the reaction temperature and composition ranges at the interface. It also elicited a bridge effect that improved the weldability of Mg alloy and steel by new formed phases.  相似文献   

8.
Zr–Sn–Nb alloy and 304 stainless steel were joined by means of partial transient liquid phase bonding. The effects of Ni interlayer on the microstructure and properties of the joints were investigated. The reaction layers are formed in both joints and which are mainly composed of σ-FeCr layer, Zr(Cr, Fe)2 + α-Zr layer and α-Zr + Zr2(Ni, Fe) layer. The intermetallic compounds are compact relatively and cracks are formed in the reaction layer of the direct bonded joint. In the joint with Ni interlayer, many α-Zr phases dispersedly exist in the reaction layer and the thickness of the reaction layer is distinctly larger than that without Ni interlayer. As a result of lower residual stresses and wider crack-free reaction layer, the bonding strength of the joint increases by using Ni interlayer.  相似文献   

9.
AZ31B Mg alloy and 6061 Al alloy were joined by using cold metal transfer (CMT) welding with pure copper (HS201) as the filler metal. The microstructure of Mg/Al CMT weld joint was studied by means of Optical Microscopy, Scanning Electron Microscope (SEM), Energy Dispersive X-ray (EDX), X-ray Diffraction (XRD). Results showed that dissimilar metals of Mg/Al could be successfully joined by CMT under proper processing parameters. The bonding strength of the joint was 34.7 MPa. A variety of Al–Cu intermetallic compounds, i.e. AlCu, CuAl2, Cu9Al4, presented in the fusion zone of Al side, and Cu based solid solution was generated in weld zone, while Cu2Mg and Al–Cu–Mg ternary eutectic structure was formed in the fusion zone of Mg side. The micro-hardness in the both sides of fusion zones increased sharply, which were 362 HV in Mg side and 260 HV in Al side. The joint was brittle fractured in the intermetallic compound layer of the fusion zone of Mg side, where plenty of Cu2Mg intermetallic compounds were distributed continuously.  相似文献   

10.
Formation of intermetallic compounds (IMCs) during friction stir welding (FSW) of aluminum/magnesium (Al/Mg) alloys easily results in the pin adhesion and then deteriorates joint formation. The severe pin adhesion transformed the tapered-and-screwed pin into a tapered pin at a low welding speed of 30 mm/min. The pin adhesion problem was solved with the help of ultrasonic. The weldability of Al/Mg alloys was significantly improved due to the good material flow induced by mechanical vibration and the fragments of the IMCs on the surface of a rotating pin caused by acoustic streaming, respectively. A sound joint with ultrasonic contained long Al/Mg interface joining length and complex mixture of Al/Mg alloys in the stir zone, thereby achieving perfect metallurgical bonding and mechanical interlocking. The ultrasonic could broaden process window and then improve tensile properties. The tensile strength of the Al/Mg joint with ultrasonic reached 115 MPa.  相似文献   

11.
Solid-state ultrasonic spot welding (USW) was used to join Al/Mg/Al tri-layered clad sheets, aiming at exploring weldability and identifying failure mode in relation to the welding energy. It was observed that the application of a low welding energy of 100 J was able to achieve the optimal welding condition during USW at a very short welding time of 0.1 s for the tri-layered clad sheets. The optimal lap shear failure load obtained was equivalent to that of the as-received Al/Mg/Al tri-layered clad sheets. With increasing welding energy, the lap shear failure load initially increased and then decreased after reaching a maximum value. At a welding energy of 25 J, failure occurred in the mode of interfacial failure along the center Al/Al weld interface due to insufficient bonding. At a welding energy of 50 J, 75 J and 100 J, failure was also characterized by the interfacial failure mode, but it occurred along the Al/Mg clad interface rather than the center Al/Al weld interface, suggesting stronger bonding of the Al/Al weld interface than that of the Al/Mg clad interface. The overall weld strength of the Al/Mg/Al tri-layered clad sheets was thus governed by the Al/Mg clad interface strength. At a welding energy of 125 J and 150 J, thinning of weld nugget and extensive deformation at the edge of welding tip caused failure at the edge of nugget region, leading to a lower lap shear failure load.  相似文献   

12.
Thin sheets of aluminum alloy 6061-T6 and one type of Advanced high strength steel, transformation induced plasticity (TRIP) steel have been successfully butt joined using friction stir welding (FSW) technique. The maximum ultimate tensile strength can reach 85% of the base aluminum alloy. Intermetallic compound (IMC) layer of FeAl or Fe3Al with thickness of less than 1 μm was formed at the Al–Fe interface in the advancing side, which can actually contribute to the joint strength. Tensile tests and scanning electron microscopy (SEM) results indicate that the weld nugget can be considered as aluminum matrix composite, which is enhanced by dispersed sheared-off steel fragments encompassed by a thin intermetallic layer or simply intermetallic particles. Effects of process parameters on the joint microstructure evolution were analyzed based on mechanical welding force and temperature that have been measured during the welding process.  相似文献   

13.
Binary Mg–xCa alloys and the quaternary Mg–Ca–Mn–xZn were studied to investigate their bio-corrosion and mechanical properties. The surface morphology of specimens was characterized by X-ray diffraction (XRD), Fourier-transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The results of mechanical properties show that the yield strength (YS), ultimate tensile strength (UTS) and elongation of quaternary alloy increased significantly with the addition of zinc (Zn) up to 4 wt.%. However, further addition of Zn content beyond 4 wt.% did not improve yield strength and ultimate tensile strength. In contrast, increasing calcium (Ca) content has a deleterious effect on binary Mg–Ca alloys. Compression tests of the magnesium (Mg) alloys revealed that the compression strength of quaternary alloy was higher than that of binary alloy. However, binary Mg–Ca alloy showed higher reduction in compression strength after immersion in simulated body fluid. The bio-corrosion behaviour of the binary and quaternary Mg alloys were investigated using immersion tests and electrochemical tests. Electrochemical tests shows that the corrosion potential (Ecorr) of binary Mg–2Ca significantly shifted toward nobeler direction from −1996.8 to −1616.6 mVSCE with the addition of 0.5 wt.% manganese (Mn) and 2 wt.% Zn content. However, further addition of Zn to 7 wt.% into quaternary alloy has the reverse effect. Immersion tests show that the quaternary alloy accompanied by two secondary phases presented higher corrosion resistance compared to binary alloys with single secondary phase. The degradation behaviour demonstrates that Mg–2Ca–0.5Mn–2Zn alloy had the lowest degradation rate among quaternary alloys. In contrast, the binary Mg–2Ca alloy demonstrated higher corrosion rates, with Mg–4Ca alloy having the highest rating. Our analysis showed the Mg–2Ca–0.5Mn–2Zn alloy with suitable mechanical properties and excellent corrosion resistance can be used as biodegradable implants.  相似文献   

14.
The joining of ferritic stainless steels and magnesium alloys is light and economic for weight reduction of automobiles. Unlike previous conventional welding method, a novel TIG–MIG hybrid welding is applied for the joint successfully in this study. The melted Mg weld metal wets the ferritic stainless steels surface to form a brazed Mg–Cu to steel connection when the interlayer thickness is 0.02 mm. When the interlayer thickness is 0.1 mm, the intermetallic compounds transition layer determined the tensile-shear strength of joints. Intermetallic compounds transition layer has been found in the 0.1 mm thick interlayer joints and no particle has been found in the 0.02 mm thick interlayer joints. Based on the analysis of microstructure and properties, joining and strengthen mechanisms of the joint were discovered. As the thickness of the Cu interlayer increases, the joining mechanism changed. The joining and strengthen mechanisms are mainly determined by the thickness of the interlayer. The tensile-shear strength of 0.1 mm thickness Cu interlayer joints is improved by 47% compared to 0.02 mm Cu.  相似文献   

15.
3 mm Pure titanium TA2 was joined to 3 mm pure copper T2 by Cold Metal Transfer (CMT) welding–brazing process in the form of butt joint with a 1.2 mm diameter ERCuNiAl copper wire. The welding–brazing joint between Ti and Cu base metals is composed of Cu–Cu welding joint and Cu–Ti brazing joint. Cu–Cu welding joint can be formed between the Cu weld metal and the Cu groove surface, and the Cu–Ti brazing interface can be formed between Cu weld metal and Ti groove surface. The microstructure and the intermetallic compounds distribution were observed and analyzed in details. Interfacial reaction layers of brazing joint were composed of Ti2Cu, TiCu and AlCu2Ti. Furthermore, crystallization behavior of welding joint and bonding mechanism of brazing interfacial reaction were also discussed. The effects of wire feed speed and groove angle on the joint features and mechanical properties of the joints were investigated. Three different fracture modes were observed: at the Cu interface, the Ti interface, and the Cu heat affected zone (HAZ). The joints fractured at the Cu HAZ had higher tensile load than the others. The lower tensile load fractured at the Cu interface or Ti interface was attributed to the weaker bonding degree at the Cu interface or Ti interface.  相似文献   

16.
Mg–Al–Si–Ca and Mg–Zn–Ca base alloys were rapidly solidified by melt spinning at the cooling rate of about a million K/s. The melt-spun ribbons were aged in the range 100–400°C for 1 h. The effect of additional elements on microstructural change and precipitation hardening after heat treatment was investigated using TEM, XRD and a Vickers microhardness tester. Age hardening occurred after aging at 200°C in the Mg–Al–Si–Ca alloys mainly due to the formation of Al2Ca and Mg2Ca phases, whereas in the Mg–Zn–Ca alloys mostly due to the distribution of Mg2Ca. TEM results revealed that spherical Al2Ca precipitate has the coherent interface with the matrix. Considering the total amount of additional elements, Mg–Zn–Ca alloys showed higher hardness and smaller size of precipitates than Mg–Al–Si–Ca alloys. With the increase of Ca content, the hardness values of the aged ribbons were increased. Among the alloys, Mg–6Zn–5Ca alloy showed the maximum value of age hardening peak(Hv:180) after aging at 200°C for 1 h.  相似文献   

17.
Brazing 6061 Al alloy to 304 stainless steel by flame brazing has been carried out with an improved CsF–RbF–AlF3 flux which matched Zn–xAl filler metals. The results showed that, the spreading area on stainless steel of Zn–xAl filler metals has been improved with the addition of RbF to CsF–AlF3 flux. It is found that a Zn-rich phase appeared between the brazing seam and the intermetallic compound (IMC) layer in the joints brazed with Zn–2Al and Zn–5Al filler metals, and the thickness of the IMC layer was approximately 1.76–6.45 μm which increased with the increase of Al added to the filler metals. Moreover, a Fe4Al13 phase formed in the IMC layer, while a Fe2Al5 phase appeared as the second layer in Zn–25Al brazed joint. Neither the Zn-rich phase nor Fe2Al5 phase was found in the joint brazed with Zn–15Al filler metal, so that the joint was exhibited the maximum shear strength which was up to 131 MPa. All the lap joints were fractured at the interfacial layer of the brazing seam and stainless steel.  相似文献   

18.
Transient Liquid Phase (TLP) bonding of two dissimilar alloys Al7075 and Ti–6Al–4V has been done at 500 °C under 5 × 10−4 torr. Cu was electrodeposited on Al7075 and Ti–6Al–4V surfaces, 50 μm thick Sn–4Ag–3.5Bi film was used as interlayer and bonding process was carried out at several bonding times. The microstructure of the diffusion bonded joints was evaluated by Light Optical Microscopy (LOM), Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). The eutectic and intermetallic compounds formation along Al7075 grain boundaries and Ti/Al interface such as θ(Al2Cu), TiAl and Ti3Al were responsible for joint formation at the aluminum and titanium interfaces. Microhardness and shear strength tests were used to investigate the mechanical properties of the bonds. Hardness of the joints increased with increasing bonding time which can be attributed to the intermetallics formation at the interface. The study showed that the highest bond strength was 36 MPa which was obtained for the samples joined for 60 min.  相似文献   

19.
The differences in physical and metallurgical properties of stainless steels and magnesium alloys make them difficult to join using conventional fusion welding processes. Therefore, the diffusion brazing of 316L steel to magnesium alloy (AZ31) was performed using a double stage bonding process. To join these dissimilar alloys, the solid-state diffusion bonding of 316L steel to a Ni interlayer was carried out at 900 °C followed by diffusion brazing to AZ31 at 510 °C. Metallographic and compositional analyses show that a metallurgical bond was achieved with a shear strength of 54 MPa. However, during the diffusion brazing stage B2 intermetallic compounds form within the joint and these intermetallics are pushed ahead of the solid/liquid interface during isothermal solidification of the joint. These intermetallics had a detrimental effect on joint strengths when the joint was held at the diffusion brazing temperature for longer than 20 min.  相似文献   

20.
Friction stir welding (FSW) is a solid-state joining process, and the joining temperature is lower than that in the fusion welding process. The effect of alloying elements on the microstructure of dissimilar joints of a Mg–Zn–Zr alloy (ZK60) and titanium by using FSW, was examined. A commercial ZK60 and a titanium plates with 2 mm in thickness was butt-joined by inserting the probe into the ZK60 plate, and slightly offset into the titanium plate side to ensure the direct contact between them. The average tensile strength of the joint was 237 MPa, which was about 69% of that of ZK60 and a fracture occurred mainly in the stir zone of ZK60 and partly at the joint interface. A thin Zn and Zr-rich layer with about 1 m in thickness was formed at the joint interface, which affected the tensile strength of the dissimilar joint of ZK60 and titanium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号