首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper reports the results of a study conducted to investigate the effect of low volume content of steel fiber on the slump, density, compressive strength under different curing conditions, splitting tensile strength, flexural strength and modulus of elasticity of a grade 35 oil palm shell (OPS) lightweight concrete mixture. The results indicate that an increase in steel fiber decreased the workability and increased the density. All the mechanical properties except the modulus of elasticity (E) improved significantly. The 28 day compressive strength of steel fiber OPS lightweight concrete in continuously moist curing was in the range of 41–45 MPa. The splitting tensile/compressive and the flexural/compressive strength ratio for plain OPS concrete are comparable with artificial lightweight aggregate. The (E) value measured in this study was about 15.5 GPa on average for all mixes, which is higher than previous studies and is in the range of normal weight concrete. Steel fiber can be used as an alternative material to reduce the sensitivity of OPS concrete in poor curing environments.  相似文献   

2.
In this paper, the basic properties viz., workability and strength of geopolymer mortar made from coarse lignite high calcium fly ash were investigated. The geopolymer was activated with sodium hydroxide (NaOH), sodium silicate and heat. The results revealed that the workable flow of geopolymer mortar was in the range of 110 ± 5%–135 ± 5% and was dependent on the ratio by mass of sodium silicate to NaOH and the concentration of NaOH. The obtained compressive strength was in the range of 10–65 MPa. The optimum sodium silicate to NaOH ratio to produce high strength geopolymer was 0.67–1.0. The concentration variation of NaOH between 10 M and 20 M was found to have a small effect on the strength. The geopolymer samples with high strength were obtained with the following practices: the delay time after moulding and before subjecting the sample to heat was 1 h and the optimum curing temperature in the oven was 75 °C with the curing duration of not less than two days.  相似文献   

3.
An experiment was performed to investigate the properties of the hardened paste of fly ash by alkali activation and to determine the possible use of the paste in the production of lightweight aggregates. The highest compressive strength was 33.9 MPa, for paste with 10% NaOH, 15% sodium silicate, and 5% MnO2, cured at room temperature after 24 h of moisture curing at 50 °C. The hardened paste of fly ash was granulated to produce AFLA (alkali-activated fly ash lightweight aggregate). AFLA exhibited specific gravity (SSD, OD), water absorption, unit weight, and solid volume percentages of 1.85 (SSD), 1.66 (OD), 11.8%, 972 kg/m3, and 58.6%, respectively. The results of the heavy metals leaching test met US EPA regulations. The concrete using AFLA exhibited a compressive strength of 26.47 MPa and good freeze–thaw resistance at 6.0% entrained air content.  相似文献   

4.
The two locally available pozzolanic solid wastes (PMs) – ultrafine palm oil fuel ash (UPOFA) and ground blast furnace slag (GBFS) – have been used as base materials to develop high alkaline activated strength concrete. The samples were prepared with combined aggregate modulus of 3.66 and at constant GBFS/PM that varied from 0 to 0.3. The combined alkaline activators (CAA) (Na2SiO3 and NaOH) to PMs ratios (CAA/PMs), temperature and curing durations also varied as 0.45–0.55, 25–90 °C, and 6–24 h, respectively. The findings revealed that the strength at 3-day and 28-day were 69.13 and 71.2 MPa, respectively and the respective optimum GBFS/PM, CAA/PM, temperature and curing duration are 0.2, 0.5, 60 °C and 24 h. GBFS was found to contribute to the soluble Ca, heterogeneity, and amorphousity of the product. This eventually facilitated the formation of suspected calcium-silicate-hydrate and the geopolymer products of Ca/Na-aluminosilicate-hydrate (C/NASH) that enhanced the compressive-strength results.  相似文献   

5.
The effects of sodium hydroxide (NaOH) concentration on setting time, compressive strength and electrical properties at the frequencies of 100 Hz–10 MHz of high calcium fly ash geopolymer pastes were investigated. Five NaOH concentrations (8, 10, 12, 15 and 18 molar) were studied. The liquid to ash ratio of 0.4, sodium silicate to sodium hydroxide ratio of 0.67 and low temperature curing at 40 °C were selected in making geopolymer pastes. The results showed that NaOH concentration had significant influence on the physical and electrical properties of geopolymer paste. The pastes with high NaOH concentrations showed increased setting time and compressive strength due to a high degree of geopolymerization as a result of the increased leaching of silica and alumina from fly ash. The dielectric constant and conductivity increased with NaOH concentration while tan δ decreased due to an increase in geopolymerization. At the frequency of 103 Hz, the dielectric constants of all pastes were approximately 104 S/cm and decreased with increased frequency. The relaxation peaks of tan δ reduced with an increase in NaOH concentration and ranged between 2.5 and 4.5. The AC conductivity behavior followed the universal power law and the values were in the range of 3.7 × 103–1.5 × 102 at 105–106 Hz.  相似文献   

6.
The aim of this study is to investigate the effect of polystyrene aggregate size on strength and moisture migration characteristics of lightweight concrete. The present study covers the use of expanded polystyrene (EPS) and un-expanded polystyrene (UEPS) beads as lightweight aggregate in concretes that contain fly ash as a supplementary cementitious material. Lightweight concrete with wide range of concrete densities (1000–1900 kg/m3) were studied mainly for compressive strength, split tensile strength, moisture migration and absorption. The results indicate that for comparable aggregate size and concrete density, concrete with UEPS aggregate exhibited 70% higher compressive strength than EPS aggregate. EPS aggregate concrete with small EPS aggregates showed higher compressive strength and the increase in compressive strength was more pronounced in low density concrete when compared with high density concrete. The UEPS aggregate concrete exhibited brittle failure similar to normal weight concrete (NWC), whereas, gradual failure was observed in EPS concrete. Moreover, the moisture migration and absorption results indicate that the EPS concrete containing bigger size and higher volumes of EPS aggregate show higher moisture migration and absorption.  相似文献   

7.
Silt dredged from reservoirs can be hydrated and sintered into lightweight aggregate for producing lightweight aggregate concrete (LWAC). The densified mixture design algorithm (DMDA) was employed to manufacture LWAC using 150 kg/m3 of water at different water-to-binder ratios (w/b = 0.28, 0.32 and 0.4) using lightweight aggregates of different particle densities (800, 1100 and 1500 kg/m3). The engineering properties of the LWAC thus obtained were examined. Results show that the fresh concrete meets the design requirement of having slump of 250 ± 20 mm and slump flow of 600 ± 100 mm. With respect to hardened properties, the compressive strength, ultrasonic pulse velocity and thermal conductivity were found to decrease with increasing w/b ratio but increase with increasing aggregate density. Moreover, higher aggregate density also resulted in less shrinkage. The surface resistivity exceeding 20 kΩ-cm also matched the design objective. The experimental results prove that LWAC made from dredged silt can help enhance durability of concrete.  相似文献   

8.
This paper presents the results of an experimental study on the effects of using recycled waste expanded polystyrene foam (EPS), as a potential aggregate in lightweight concrete. In this study, thermally modified waste EPS foams have been used as aggregate. Modified waste expanded polystyrene aggregates (MEPS) were obtained by heat treatment method by keeping waste EPS foams in a hot air oven at 130 °C for 15 min. Effects of MEPS aggregate on several properties of concrete were investigated. For this purpose, six series of concrete samples were prepared. MEPS aggregate was used as a replacement of natural aggregate, at the levels of 0%, 25%, 50%, 75%, and 100% by volume. The density of MEPS is much less than that of natural aggregate; MEPS concrete becomes a lightweight concrete with a density of about 900–1700 kg/m3. The 28-d compressive strengths of MEPS concrete range from 12.58 MPa to 23.34 MPa, which satisfies the strength requirement of semi-structural lightweight concrete.  相似文献   

9.
In this study, the effects of heat treatment on oil palm shell (OPS) coarse aggregates are evaluated for high strength lightweight concrete (HSLWC). OPS coarse aggregates are subjected to heat treatment at two temperature settings (60 and 150 °C) and duration of heat treatment (0.5 and 1 h). The reduction in density is found to be within the range of HSLWC when heat-treated OPS aggregates are added into the oil palm shell concrete (OPSC). The results reveal that workability of the OPSC increases with an increase in temperature and duration of heat treatment of the OPS aggregates. It is found that the maximum achievable 28-days and 90-days compressive strength is 49 and 52 MPa, respectively. Furthermore, the ultrasonic pulse velocity (UPV) is examined and the results showed that a good condition is achieved for the OPS HSLWC at the age of 3 days. The average modulus of elasticity (i.e. (E) value), is found to be 15.9 GPa for all mixes, which is higher than that reported in previous studies and is within the range of normal weight concrete. Hence, the findings of this study are of primary importance as they reveal that the selection of a suitable temperature and duration of heat treatment for OPS aggregates can be used as a new eco-friendly alternative method to enhance HSLWC.  相似文献   

10.
Most previous works on fly ash based geopolymer concrete focused on concretes subjected to heat curing. Development of geopolymer concrete that can set and harden at normal temperature will widen its application beyond precast concrete. This paper has focused on a study of fly ash based geopolymer concrete suitable for ambient curing condition. A small proportion of ordinary Portland cement (OPC) was added with low calcium fly ash to accelerate the curing of geopolymer concrete instead of using elevated heat. Samples were cured in room environment (about 23 °C and RH 65 ± 10%) until tested. Inclusion of OPC as little as 5% of total binder reduced the setting time to acceptable ranges and caused slight decrease of workability. The early-age compressive strength improved significantly with higher strength at the age of 28 days. Geopolymer microstructure showed considerable portion of calcium-rich aluminosilicate gel resulting from the addition of OPC.  相似文献   

11.
The production and the properties of lightweight composite panels, with expanded vermiculite as lightweight aggregate and geopolymer as binder, were investigated. Different compositions of the geopolymer binders (metakaolin or alumina-based) and two sizes of expanded vermiculite were tested. The produced composites were subjected to microstructural analyses, as well as to thermal and mechanical tests. Densities ranged between 700 and 900 kg/m3, while the average strength and thermal conductivity were about 2 MPa and 0.2 W/mK, respectively. Results show that lightweight composites can be produced with satisfactory density and mechanical and thermal properties compared with other materials used in building sector, such as plasterboard or cellular concrete.  相似文献   

12.
The aim of this study is to investigate the role of 0–2 mm fine aggregate on the compressive and splitting tensile strengths of recycled concrete aggregate (RCA) concrete with normal and high strengths. Normal coarse and fine aggregates were substituted with the same grading of RCAs in two normal and high strength concrete mixtures. In addition, to keep the same slump value for all mixes, additional water or superplasticizer were used in the RCA concretes. The compressive and splitting tensile strengths were measured at 3, 7 and 28 days. Test results show that coarse and fine RCAs, which were achieved from a parent concrete with 30 MPa compressive strength, have about 11.5 and 3.5 times higher water absorption than normal coarse and fine aggregates, respectively. The density of RCAs was about 20% less than normal aggregates, and, hence, the density of RCA concrete was about 8–13.5% less than normal aggregate concrete. The use of RCA instead of normal aggregates reduced the compressive and splitting tensile strengths in both normal and high strength concrete. The reduction in the splitting tensile strength was more pronounced than for the compressive strength. However, both strengths could be improved by incorporating silica fume and/or normal fine aggregates of 0–2 mm size in the RCA concrete mixture. The positive effect of the contribution of normal sand of 0–2 mm in RCA concrete is more pronounced in the compressive strength of a normal strength concrete and in the splitting tensile strength of high strength concrete. In addition, some equation predictions of the splitting tensile strength from compressive strength are recommended for both normal and RCA concretes.  相似文献   

13.
Reservoir sediment, as the main material, was blended with municipal solid waste incinerator (MSWI) fly ash (including cyclone ash and scrubber ash) to manufacture lightweight aggregates (LWAs) using a pelletizing disk, and then sintering in a rotary kiln. The selected LWA was used as coarse aggregate for producing self-consolidating lightweight concrete (SCLWC). The results show that the maximum content of MSWI fly ash should be less than 30%. LWA with specific gravity in the range of 0.88–1.69 g/cm3 and crushing strength as high as 13.43 MPa can be produced. SCLWCs showed excellent flow-ability without bleeding or segregation. The 28-day compressive strengths of the SCLWCs ranged between 25 and 55 MPa. The electrical resistivity and ultrasonic pulse velocity of the SCLWCs satisfied the required values of 8.5  cm and 3600 m/s, respectively. Therefore, the SCLWCs produced in this study have good corrosion resistance and can be classified as good quality.  相似文献   

14.
Fly ash based geopolymer is an emerging alternative binder to cement for making concrete. The cracking, spalling and residual strength behaviours of geopolymer concrete were studied in order to understand its fire endurance, which is essential for its use as a building material. Fly ash based geopolymer and ordinary portland cement (OPC) concrete cylinder specimens were exposed to fires at different temperatures up to 1000 °C, with a heating rate of that given in the International Standards Organization (ISO) 834 standard. Compressive strength of the concretes varied in the range of 39–58 MPa. After the fire exposures, the geopolymer concrete specimens were found to suffer less damage in terms of cracking than the OPC concrete specimens. The OPC concrete cylinders suffered severe spalling for 800 and 1000 °C exposures, while there was no spalling in the geopolymer concrete specimens. The geopolymer concrete specimens generally retained higher strength than the OPC concrete specimens. The Scanning Electron Microscope (SEM) images of geopolymer concrete showed continued densification of the microstructure with the increase of fire temperature. The strength loss in the geopolymer concrete specimens was mainly because of the difference between the thermal expansions of geopolymer matrix and the aggregates.  相似文献   

15.
Fluidized bed coal combstion (FBC) is extensively used in small self-generation power plants. The fly ash obtained from this FBC process contains high quantity of calcium and sulfate compounds which hinders its use in the construction industry. In addition, its reactivity is low and additional source material or additive is, therefore, needed to increase the reaction. This research studied the use of Al(OH)3 and high concentrations of NaOH to control ettringite formation in the FBC fly ash geopolymer. Two replacement levels of 2.5 wt.% and 5.0 wt.% of Al(OH)3 and three NaOH concentrations of 10, 12 and 15 M were used in the study. Results indicated that the NaOH concentration affected the ettringite formation and strength of the FBC geopolymer. No ettringite was formed at high NaOH concentration of 15 M which helped the dissolution of calcium sulfate and formed the additional calcium hydroxide. The subsequent pozzolanic reaction led to strength gain of the geopolymer. For 15 M NaOH, the addition of 2.5 wt.% Al(OH)3 promoted the reaction and formed a dense matrix of alumino silicate compound. Relatively high 7-day compressive strength of 30 MPa was obtained.  相似文献   

16.
This investigation is mainly focused on finding the unit weight, compressive strength, modulus of elasticity (MOE) and splitting tensile strength (STS) of SCC mixes with different coarse aggregate blending (60:40 and 40:60) (20 mm and 10 mm) and coarse aggregate content (28% and 32%) and these properties were compared to a conventional concrete (CC). All SCC mixes had 35% replacement of cement with class F fly ash. The coarse aggregate blending did not affect the compressive strength of SCC mixes, but it affected the unit weight, MOE and STS of SCC mixes. A new parameter called coarse aggregate points (CAPs) has been introduced to study the effect of coarse aggregate blending in a particular coarse aggregate content on mechanical properties of SCC mixes. It is observed that for the given strength, SCC mixes with the same CAP value have shown similar mechanical properties. The measured MOE of all mixes were compared with ACI 363R and AASHTO LRFD/ACI 318 predicted equations. The measured STS of all mixes were compared with ACI 363R and CEB-FIP predicted equations.  相似文献   

17.
Fly ash geopolymer requires rather long heat curing to obtain reasonable strength development at an early age. However, the long heat curing period limits the application of the fly ash geopolymer. High strength development and a reduction in heat curing duration have been considered for energy saving. Therefore, this research proposed a process using 90-W microwave radiation for 5 min followed by conventional heat curing for high-calcium fly ash geopolymer. Results showed that the compressive strengths of geopolymer with microwave radiation followed by conventional heat curing were comparable to those of the control cured at 65 °C for 24 h. Microwave radiation gave the enhanced densification. In addition, SEM images showed that the gels formed on the fly ash particles owing to the promoted dissolution of amorphous phases from fly ash. This method accelerated the geopolymerization and gave the high compressive strength comparable to the conventional curing.  相似文献   

18.
The use of fly ash as a mineral admixture in the manufacture of concrete has received considerable attention in recent years. For this reason, several experimental studies are carried out by using fly ash at different proportions replacement of cement in concrete. In the present study, the models are developed in genetic programming for predicting the compressive strength values of cube (100 and 150 mm) and cylinder (100 × 200 and 150 × 300 mm) concrete containing fly ash at different proportions. The experimental data of different mixtures are obtained by searching 36 different literatures to predict these models. In the set of the models, the age of specimen, cement, water, sand, aggregate, superplasticizers, fly ash and CaO are entered as input parameters, while the compressive strength values of concrete containing fly ash are used as output parameter. The training, testing and validation set results of the explicit formulations obtained by the genetic programming models show that artificial intelligent methods have strong potential and can be applied for the prediction of the compressive strength of concrete containing fly ash with different specimen size and shape.  相似文献   

19.
This study focused on the effects of rice husk ash (RHA) on the mechanical properties of roller compacted concrete (RCC) designed with original and reclaimed asphalt pavement (RAP) materials. The RCC mixes were produced by partial substitution of cement with RHA at varying amounts of 3% and 5%. Four aggregate combinations including the mix with original aggregate, coarse RAP + fine original aggregate, coarse original aggregate + fine RAP and total RAP were considered. The main experimental design consisted of the compressive strength and three points bending tests. Bending test was used to measure the modulus of rupture, material’s energy absorbency and analyse the fatigue response of RCC mixes. All tests were performed after 7, 28 and 120 days curing except the fatigue test that performed on 120 days specimens. Adding RHA resulted in higher optimum moisture content (OMC) and lower maximum dry density. Furthermore, adding RAP with different dimensions reduced the OMC and maximum dry density. The material’s flexibility improved upon replacing 3% cement by RHA. However, the energy absorbency reduced by increasing the RHA content to 5%. The fatigue life of RCC mixes containing RAP material was lower than the conventional one. Furthermore, replacing the coarse aggregate by RAP led to higher fatigue life than the fine aggregate. There was a strong relationship (R2 > 0.90) between the energy absorbency and fatigue response of RCC mixes. At higher stress ratios of 0.72, the mix with higher energy absorbency behaved better under repeated loadings. Besides, a reverse relationship was found between the fatigue life and material porosity. Adding 3% RHA reduced the porosity especially after 120 days curing and improved the fatigue resistance. However, the addition of RHA to 5% resulted in higher porosities and lower fatigue lives.  相似文献   

20.
This paper presents an experimental study on the restrained shrinkage cracking of the lightweight concretes made with cold-bonded fly ash lightweight aggregates. Two types of fly ash having different physical and chemical properties were utilized in the production of lightweight aggregates with different strengths. Afterwards, lower strength aggregates were also surface treated by water glass and cement–silica fume slurry to improve physical and mechanical properties of the particles. Therefore, a total of eight concrete mixtures were designed and cast at 0.35 and 0.55 water–cement ratios using four types of lightweight coarse aggregates differing in their surface texture, density, water absorption, and strength. Ring type specimens were used for restrained shrinkage cracking test. Free shrinkage, creep, weight loss, compressive and splitting tensile strengths, and modulus of elasticity of the concretes were also investigated. Results indicated that improvement in the lightweight aggregate properties extended the cracking time of the concretes resulting in finer cracks associated with the lower free shrinkage. Moreover, there was a marked increase in the compressive and splitting tensile strengths, and the modulus of elasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号