首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
In the present paper, thermo-mechanical fatigue (TMF) and low cycle fatigue (LCF) or isothermal fatigue (IF) lifetimes of a cast magnesium alloy (the AZ91 alloy) were studied. In addition to a heat treatment process (T6), several rare elements were added to the alloy to improve the material strength in the first step. Then, the cyclic behavior of the AZ91 was investigated. For this objective, strain-controlled tension–compression fatigue tests were carried out. The temperature varied between 50 and 200 °C in the out-of-phase (OP) TMF tests. The constraint factor which was defined as the ratio of the mechanical strain to the thermal strain, was set to 75%, 100% and 125%. For LCF tests, mechanical strain amplitudes of 0.20%, 0.25% and 0.30% were considered at constant temperatures of 25 and 200 °C. Experimental fatigue results showed that the cyclic hardening behavior occurred at the room temperature in the AZ91 alloy. At higher temperatures, this alloy had a brittle fracture. But also, it was not significantly clear that the cyclic hardening or the cyclic softening behavior would be occurred in the material. Then, the high temperature LCF lifetime was more than that at the room temperature. The OP-TMF lifetime was the least value in comparison to that of LCF tests. At the end of this article, two energy-based models were applied to predict the fatigue lifetime of this magnesium alloy.  相似文献   

2.
In this study, the tensile properties, high cycle fatigue behavior and plane-strain fracture toughness of the sand-cast Mg–10Gd–3Y–0.5Zr magnesium alloy were investigated, comparison to that of sand-cast plus T6 heat treated magnesium alloy which named after sand-cast-T6. The results showed that the tensile properties of the sand-cast alloy are greatly improved after T6 heat treatment, and the fatigue strength (at 107 cycles) of the sand-cast Mg–10Gd–3Y–0.5Zr magnesium alloy increases from 95 to 120 MPa after T6 heat treatment, i.e. the improvement of 26% in fatigue strength has been achieved. The plane-strain fracture toughnesses KIC of the sand-cast and sand-cast-T6 alloys are about 12.1 and 16.3 MPa m1/2, respectively. In addition, crack initiation, crack propagation and fracture behavior of the studied alloys after tensile test, high cycle fatigue test and plane-strain fracture toughness test were also investigated systematically.  相似文献   

3.
The effect of pre-compression deformation on the low-cycle fatigue properties and cyclic deformation behavior of as-rolled AZ31 alloy was investigated by performing the stress-controlled low-cycle fatigue tests at room temperature. Fatigue properties and cyclic damage process should be closely related to the twins. The present work aimed to investigate the deformation mechanism and fatigue life caused by the introduced {1 0−1 2} twinning–detwinning from the viewpoint of stress amplitude. The results reveal that the twins contribute to the fatigue properties and cyclic damage process of AZ31 alloy. There were noticeable changes in hysteresis loops, microstructures and fatigue lives when the stress amplitude increased from 120 to 150 MPa. The fatigue life of pre-compressed samples was more superior to that of the as-rolled sample under different stress amplitudes, especially under the stress amplitude close to the tensile yield strength of the as-rolled sample.  相似文献   

4.
The ultrafine grain structure was developed in spray-formed AZ31 magnesium alloy by optimizing delivery tube orifice diameter. A significant refinement of grain size ∼1 μm in ultrafine level was achieved by using 2.25 mm delivery tube orifice diameter. The tensile strength value was increased from 145 MPa of as-cast alloy to 250 MPa of spray-formed alloy, registering an enhancement of ∼72%. On the other hand, elongation was increased from 6% to 13% using 2.25 mm orifice, registering more than onefold increase in elongation. Also, hardness enhancement of ∼49% was observed in spray-formed AZ31 alloy compared to as-cast alloy. The fracture surface of spray-formed AZ31 Mg alloy evidences the mixed type of ductile and brittle fracture.  相似文献   

5.
A semi-solid processed (thixomolded) Mg–9Al–1Zn magnesium alloy (AZ91D) was subjected to friction stir welding (FSW), aiming at evaluating the weldability and fatigue property of the FSW joint. Microstructure analysis showed that a recystallized fine-grained microstructure was generated in the nugget zone (NZ) after FSW. The yield strength, ultimate tensile strength, and elongation of the FSW joint were obtained to be 192 MPa, 245 MPa, and 7.6%, respectively. Low-cycle fatigue tests showed that the FSW joint had a fatigue life fairly close to that of the BM, which could be well described by the Basquin and Coffin-Manson equations. Unlike the extruded magnesium alloys, the hysteresis loops of FSW joint of the thixomolded AZ91D alloy were basically symmetrical, while the non-linear or pseudoelastic behavior was still present. The FSW joint was observed to fail in the BM section rather than in the NZ. Fatigue crack initiated basically from the pores at or near the specimen surface, and crack propagation was mainly characterized by fatigue striations along with the presence of secondary cracks.  相似文献   

6.
The purpose of this study was to evaluate strain-controlled cyclic deformation behavior of an extruded Mg–3Nd–0.2Zn–0.5Zr (NZ30K) magnesium alloy. The microstructure of this alloy consisted of a bimodal microstructure with equiaxed recrystallized grains and unrecrystallized coarse grains along with a large number of smaller second-phase particles present inside the grains and larger particles along the grain boundaries alongside a characteristic precipitate free zone (PFZ). The average grain size was about approximately 5–7 μm. It was observed that unlike the higher RE-containing Mg–10Gd–3Y–0.5Zr (GW103K) magnesium alloy, the NZ30K alloy exhibited asymmetrical hysteresis loops in tension and compression in the fully reversed strain-control tests at a strain ratio of Rε = −1. This was mainly due to the presence of relatively stronger crystallographic texture, PFZ, and the resultant twinning–detwinning activities during cyclic deformation. While this alloy exhibited cyclic softening at lower strain amplitudes and cyclic hardening at higher strain amplitudes, it had an equivalent fatigue life to that of other extruded Mg alloys. Fatigue crack was observed to initiate from the specimen surface with some isolated facets of the cleavage-like planes near the initiation site. Crack propagation was basically characterized by serrated fatigue striations.  相似文献   

7.
As the lightest metal material, magnesium alloy is widely used in the automobile and aviation industries. Due to the crashing of the automobile is a process of complicated and highly nonlinear deformation. The material deformation behavior has changed significantly compared with quasi-static, so the deformation characteristic of magnesium alloy material under the high strain rate has great significance in the automobile industry. In this paper, the tensile deformation behavior of AZ31B magnesium alloy is studied over a large range of the strain rates, from 700 s−1 to 3 × 103 s−1 and at different temperatures from 20 to 250 °C through a Split-Hopkinson Tensile Bar (SHTB) with heating equipment. Compared with the quasi-static tension, the tensile strength and fracture elongation under high strain rates is larger at room temperature, but when at the high strain rates, fracture elongation reduces with the increasing of the strain rate at room temperature, the adiabatic temperature rising can enhance the material plasticity. The morphology of fracture surfaces over wide range of strain rates and temperatures are observed by Scanning Electron Microscopy (SEM). The fracture appearance analysis indicates that the fracture pattern of AZ31B in the quasi-static tensile tests at room temperature is mainly quasi-cleavage pattern. However, the fracture morphology of AZ31B under high strain rates and high temperatures is mainly composed of the dimple pattern, which indicates ductile fracture pattern. The fracture mode is a transition from quasi-cleavage fracture to ductile fracture with the increasing of temperature, the reason for this phenomenon might be the softening effect under the high strain rates.  相似文献   

8.
The main challenge for the application of magnesium and its alloy as degradable biomaterials lies in their high degradation rates in physiological environment. In the present work, the biodegradable behavior of a patent magnesium alloy Mg–Nd–Zn–Zr (JDBM) and a reference alloy AZ31 was systematically investigated in Hank's physiological solution. The corrosion rate of JDBM (0.28 mm/year) was much slower than that of AZ31 (1.02 mm/year) in Hank's solution for 240 h. After corrosion products were removed, smooth surface of the JDBM was observed by SEM observation compared to many deep pits on the surface of AZ31. Open-circuit potential and potentiodynamic polarization results manifested that pitting corrosion did not occurred on the surface of JDBM at the early period of immersion time due to the formation of a more protective and compact film layer suggested by electrochemical impedance spectroscopy study. The corrosion rate of magnesium alloys was found to slow down in dynamic corrosion in comparison with that in the static corrosion. This provided the basis for scientific evaluation of in vitro and in vivo corrosion behavior for degradable biomagnesium alloy. The present results suggest that the new patent magnesium alloy JDBM is a promising candidate as degradable biomaterials and is worthwhile for further investigation in vivo corrosive environment.  相似文献   

9.
The fatigue behavior of AZ31B magnesium alloy welded joint during high cycle fatigue test was investigated by infrared thermography. Five stages of superficial temperature evolution were observed: an initial temperature increase, a temperature decline, a temperature equilibrium, an abrupt temperature increase and a temperature drop after the failure. The theoretical models were formulated to explain the observed temperature evolution. The mean temperature decline caused by thermoelastic effect was observed and discussed when the maximum stresses were below 30 MPa. The influence of weld reinforcement on fatigue behavior was also investigated. A good precision was achieved in fatigue strength prediction by means of infrared thermography.  相似文献   

10.
This paper evaluates the fatigue life properties of low carbon grey cast iron (EN-GJL-250), which is widely used for automotive brake discs. Although several authors have examined mechanical and fatigue properties at room temperatures, there has been a lack of such data regarding brake discs operating temperatures. The tension, compression and low cycle fatigue properties were examined at room temperature (RT) and at brake discs’ working temperatures: 500 °C, 600 °C and 700 °C. The microstructure of the material was documented and analysed. Tensile stress–strain curves, cyclic hardening/softening curves, stress–strain hysteresis loops, and fatigue life curves were obtained for all the above-mentioned temperatures. It was concluded, that Young’s modulus is comparable with both tension and compression, but yield its strength and ultimate strength are approximately twice as great in compression than in tension. All the mechanical properties remained quite stable until 500 °C, where at 700 °C all deteriorated drastically. During fatigue testing, the samples endured at 500 °C on average at around 50% of cycles at room temperature. Similar to other materials’ properties, the cycles to failure have dropped significantly at 700 °C.  相似文献   

11.
Mechanical behavior of hot rolled Mg–3Sn–1Ca (TX31) magnesium alloy sheets were studied in the temperature range 25–350 °C. The microstructure of the alloy consisted of the eutectic structure of α-Mg + Mg2Sn and a dispersion of needle-like CaMgSn. The highest room-temperature ductility of 18% was obtained by hot rolling of the cast slabs at 440 °C, followed by annealing at 420 °C. The high temperature tensile deformation of the material was characterized by a decrease in work hardening exponent (n) and an increase in strain rate sensitivity index (m). These variations resulted in respective drops of proof stress and tensile strength from 126.5 MPa and 220 MPa at room temperature to 23.5 MPa and 29 MPa at 350 °C. This was in contrast to the ductility of the alloy which increased from 18% at room temperature to 56% at 350 °C. The observed variations in strength and ductility were ascribed to the activity of non-basal slip systems and dynamic recovery at high temperatures. The TX31 alloy showed lower strength than AZ31 magnesium alloy at low temperatures, while it exhibited superior strength at temperatures higher than 200 °C, mainly due to the presence of thermally stable CaMgSn particles.  相似文献   

12.
The hot tensile deformation behaviors of AZ31B magnesium alloy are investigated over wide ranges of forming temperature and strain rate. Considering the effects of strain on material constants, a comprehensive constitutive model is applied to describe the relationships of flow stress, strain rate and forming temperature for AZ31B magnesium alloy. The results show that: (1) The effects of forming temperature and strain rate on the flow behaviors of AZ31B magnesium alloy are significant. The true stress–true strain curves exhibit a peak stress at small strains, after which the flow stress decreases until large strain, showing an obvious dynamic softening behavior. A considerable strain hardening stage with a uniform macroscopic deformation appears under the temperatures of 523 and 573 K. The strain hardening exponent (n) increases with the increase of strain rate or the decrease of forming temperature. There are not obvious strain-hardening stages when the forming temperature is relatively high, which indicates that the dynamic recrystallization (DRX) occurs under the high forming temperature, and the balance of strain hardening and DRX softening is easy to obtain. (2) The predicted stress–strain values by the established model well agree with experimental results, which confirm that the established constitutive equation can give an accurate and precise estimate of the flow stress for AZ31B magnesium alloy.  相似文献   

13.
Damage accumulation in Mg AZ31–AZ80 alloy bi-crystals under fatigue loading at room temperature is studied using a modified version of the crystal plasticity finite element model of Abdolvand and Daymond. The model accounts for strain accommodation by both slip and tensile twinning, and is first shown to reasonably describe monotonic single crystal Mg experimental data from the literature. The high cycle fatigue behavior was then investigated in misoriented dissimilar alloy bi-crystals through stress-controlled simulations up to 1000 cycles. Nine different orientation combinations were simulated and the fatigue damage evolution, defined as the cumulative shear strain amplitude, were compared and analyzed. The bi-crystal geometry was used to simulate possible microstructure combinations occurring, for instance within an idealized friction stir weld. Findings suggest that when either of the alloy bi-crystal grains is oriented for basal slip, poor fatigue performance can occur by twinning or slip localization depending upon the neighboring orientation.  相似文献   

14.
A series of reheating-isothermal holding experiments and compression tests were conducted on pristine magnesium alloy AZ91 extruded by equal channel angular extrusion(ECAE) and Si C particles(a volume fraction of 15%) reinforced AZ91 composite(AZ91-SiC_p) by regular extrusion. Dissolution of eutectic compounds and partial melting of the α-Mg matrix occurred during the reheating of these materials. Spherical semisolid slurries of these materials were obtained when the reheating temperature and isothermal holding time were 550?C and 20 s, respectively. The presence of SiC_p in AZ91-Si Cpnot only caused lower liquid fractions of semisolid slurries but also resulted in higher values of flow stress during semisolid compression tests. Both AZ91 alloy and AZ91-Si Cpcomposite exhibited better thixoforming properties at high temperatures. Segregation of Si Cpdid not occur during thixoforming of AZ91-Si Cpcomposite after an isothermal holding at semisolid temperatures for 20 s.  相似文献   

15.
Abstract

The purpose of the present work was to investigate room temperature cyclic deformation and crack propagation behaviour in the most widely used die casting magnesium alloy AZ91HP with different heat treatments. In addition, examination of the low cycle fatigue properties of solid solution treated alloy AZ91HP-T4 was emphasised in comparison with AM50HP. Obvious cyclic strain hardening was found in low cycle fatigue tests, especially for AZ91HP-T4 at high cyclic strain amplitudes. Nevertheless, it was very difficult to evaluate differences in low cycle fatigue behaviour between die casting alloy AZ91HP-F, artificially aged alloy AZ91HP-T6, solution treated alloy AZ91HP-T4, and AM50HP(-F) because of the scatter of test data. However, it may be concluded that the last two alloys had greater plastic strain components during cyclic deformation, and AZ91HP-T4 exhibited a longer fatigue life than that of AM50HP at the highest strain amplitude. According to results of tests carried out on AZ91HP compact tension (CT) specimens, it was concluded that solution treatment could reduce the fatigue crack propagation rate, and plasticity induced crack closure was considered to have a predominant effect on fatigue crack propagation.  相似文献   

16.
The effects of large prestrains (18–40%), produced by in-plane compression, on the asymmetry and the anisotropy of the stress response and on the fatigue life are investigated under fully reversed axial strain for a 345 MPa yield strength V–N high strength low alloy steel sheet. After prestraining, the hysteresis loops are asymmetric and the stress response is anisotropic, i.e., the response differs in directions parallel and perpendicular to that of the compressive prestrain. To understand the cyclic flow stress asymmetry, monotonic tension and compression tests were conducted in these two directions after prestraining. It is shown that the loop asymmetry is related to the Bauschinger effect after prestraining. Two cyclic stress strain curves, one corresponding to the tension side of the hysteresis loops and the other to the compression side, are defined to accurately describe the post-prestraining behavior. The amount of strengthening gained by prestraining is partially retained after cycling. Prestraining increases the fatigue life at low strain amplitudes but decreases it at high strain amplitudes.  相似文献   

17.
In the field of deformation process modeling, constitutive equations are invariably used as a calculation basis to estimate the materials flow responses. Accordingly, in the present study, a constitutive analysis has been conducted on the AZ81 magnesium alloy employing experimental stress–strain data obtained from isothermal hot compression tests. These tests had been done in the temperature range of 250–450 °C under strain rates of 0.003, 0.03 and 0.3 s−1. The effects of the temperature and strain rate on hot deformation behavior have been expressed in terms of an exponent-type Zener–Hollomon equation. Furthermore, the influence of strain has been included in the constitutive equation by considering its effect on different material constants. Consequently, a model to predict the high-temperature flow behavior of AZ81 magnesium alloy has been established. The true stress–true strain curves predicted by the extracted model are in good agreement with the experimental results, thereby confirming the validity of the developed constitutive relation.  相似文献   

18.
The quasi‐state and dynamic mechanism of AZ31 magnesium alloy at a strain rates range of 0.001 s‐1–2500 s‐1 under a temperature range of 20 °C–250 °C were researched by compression tests using the electronic universal testing machine and split Hopkinson pressure bar system. The true stress‐strain curves at different strain rates and evaluated temperatures were obtained. The result shows that the thermal soften effect of AZ31 magnesium alloy is significant. By modifying the temperature term of the original Johnson Cook model of AZ31 magnesium alloy, a modified Johnson Cook model of AZ31 magnesium alloy has been proposed to reveal thermal soften effect on the deformation behavior of AZ31 magnesium alloy more precisely. With the modified Johnson Cook model and fracture model, the finite element method simulation of AZ31 magnesium alloy hat shaped specimen under impacting was conducted. The numerical simulation result is consistent with the experimental result, which indicates that the modified Johnson Cook model and fracture model are greatly valid to predict the deformation and fracture behavior of the AZ31 magnesium alloy hat shaped specimen under impacting.  相似文献   

19.
The strain controlled low cycle fatigue properties of the studied gray cast iron for engine cylinder blocks were investigated. At the same total strain amplitude, the low cycle fatigue life of the studied material at 523 K was higher than that at 423 K. The fatigue behavior of the studied material was characterized as cyclic softening at any given total strain amplitude (0.12%–0.24%), which was attributed to fatigue crack initiation and propagation. Moreover, this material exhibited asymmetric hysteresis loops due to the presence of the graphite lamellas. Transmission electron microscopy analysis suggested that cyclic softening was also caused by the interactions of dislocations at 423 K, such as cell structure in ferrite, whereas cyclic softening was related to subgrain boundaries and dislocation climbing at 523 K. Micro-analysis of specimen fracture appearance was conducted in order to obtain the fracture characteristics and crack paths for different strain amplitudes. It showed that the higher the temperature, the rougher the crack face of the examined gray cast iron at the same total strain amplitude. Additionally, the microcracks were readily blunted during growth inside the pearlite matrix at 423 K, whereas the microcracks could easily pass through pearlite matrix along with deflection at 523 K. The results of fatigue experiments consistently showed that fatigue damage for the studied material at 423 K was lower than that at 523 K under any given total strain amplitude.  相似文献   

20.
Effect of stress ratio on fatigue properties of a titanium alloy (TC-17) in the high cycle fatigue (HCF) and very high cycle fatigue (VHCF) were investigated by electromagnetic and ultrasonic fatigue testing. The SN curves at R = −1, 0.1, 0.5 and 0.7 at 110 Hz and 20 kHz were obtained and discussed. The effects of frequency on fatigue strength was also investigated. It was concluded that the fatigue strength with 50% fatigue failure probability at R = 0.1, 0.5 and 0.7 is lower to the Goodman line and shows a bilinear decreasing trend. Cleavage fracture of primary grains in the surface and interior initiation zone were observed. The formation of the facets induced by the basal or prismatic slips of the H.C.P grains decreased the fatigue strength with variation in mean stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号