首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fruit fly Drosophila melanogaster has become a valuable model organism in nutritional science, which can be applied to elucidate the physiology and the biological function of nutrients, including trace elements. Importantly, the application of chemically defined diets enables the supply of trace elements for nutritional studies under highly standardized dietary conditions. Thus, the bioavailability and bioactivity of trace elements can be systematically monitored in D. melanogaster. Numerous studies have already revealed that central aspects of trace element homeostasis are evolutionary conserved among the fruit fly and mammalian species. While there is sufficient evidence of vital functions of boron (B) in plants, there is also evidence regarding its bioactivity in animals and humans. Lithium (Li) is well known for its role in the therapy of bipolar disorder. Furthermore, recent findings suggest beneficial effects of Li regarding neuroprotection as well as healthy ageing and longevity in D. melanogaster. However, no specific essential function in the animal kingdom has been found for either of the two elements so far. Here, we summarize the current knowledge of Li and B bioactivity in D. melanogaster in the context of health and disease prevention.  相似文献   

2.
Research on the ergosterol biosynthetic pathway in fungi has focused on the identification of the specific sterol structure required for normal membrane structure and function and for completion of the cell cycle. The pathway and its end product are also the targets for a number of antifungal drugs. Identification of essential steps in ergo-sterol biosynthesis could provide new targets for the development of novel therapeutic agents. Nine of the eleven genes in the portion of the pathway committed exclusively to ergosterol biosynthesis have been cloned, and their essentiality for aerobic growth has been determined. The first three genes;ERG9 (squalene synthase),ERG1 (squalene epoxidase), andERG7 (lanosterol synthase), have been cloned and found to be essential for aerobic viability since their absence would result in the cell being unable to synthesize a sterol molecule. The remaining eight genes encode enzymes which metabolize the first sterol, lanosterol, to ultimately form ergosterol. The two earliest genes,ERG11 (lanosterol demethylase) andERG24 (C-14 reductase), have been cloned and found to be essential for aerobic growth but are suppressed by mutations in the C-5 desaturase (ERG3) gene andfen1 andfen2 mutations, respectively. The remaining cloned genes,ERG6 (C-24 methylase),ERG2 (D8Æ7 isomerase),ERG3 (C-5 desaturase), andERG4 (C-24(28) reductase), have been found to be nonessential. The remaining genes not yet cloned are the C-4 demethylase and the C-22 desaturase (ERG5).  相似文献   

3.
Caenorhabditis elegans, a bacterivorous nematode, lives in complex rotting fruit, soil, and compost environments, and chemical interactions are required for mating, monitoring population density, recognition of food, avoidance of pathogenic microbes, and other essential ecological functions. Despite being one of the best-studied model organisms in biology, relatively little is known about the signals that C. elegans uses to interact chemically with its environment or as defense. C. elegans exudates were analyzed by using several analytical methods and found to contain 36 common metabolites that include organic acids, amino acids, and sugars, all in relatively high abundance. Furthermore, the concentrations of amino acids in the exudates were dependent on developmental stage. The C. elegans exudates were tested for bacterial chemotaxis using Pseudomonas putida (KT2440), a plant growth promoting rhizobacterium, Pseudomonas aeruginosa (PAO1), a soil bacterium pathogenic to C. elegans, and Escherichia coli (OP50), a non-motile bacterium tested as a control. The C. elegans exudates attracted the two Pseudomonas species, but had no detectable antibacterial activity against P. aeruginosa. To our surprise, the exudates of young adult and adult life stages of C. elegans exudates inhibited quorum sensing in the reporter system based on the LuxR bacterial quorum sensing (QS) system, which regulates bacterial virulence and other factors in Vibrio fischeri. We were able to fractionate the QS inhibition and bacterial chemotaxis activities, thus demonstrating that these activities are chemically distinct. Our results demonstrate that C. elegans can attract its bacterial food and has the potential of partially regulating the virulence of bacterial pathogens by inhibiting specific QS systems.  相似文献   

4.
Pseudomonas donghuensis HYS is more virulent than P. aeruginosa toward Caenorhabditis elegans but the mechanism underlying virulence is unclear. This study is the first to report that the specific gene cluster gtrA/B/II in P. donghuensis HYS is involved in the virulence of this strain toward C. elegans, and there are no reports of GtrA, GtrB and GtrII in any Pseudomonas species. The pathogenicity of P. donghuensis HYS was evaluated using C. elegans as a host. Based on the prediction of virulence factors and comparative genomic analysis of P. donghuensis HYS, we identified 42 specific virulence genes in P. donghuensis HYS. Slow-killing assays of these genes showed that the gtrAB mutation had the greatest effect on the virulence of P. donghuensis HYS, and GtrA, GtrB and GtrII all positively affected P. donghuensis HYS virulence. Two critical GtrII residues (Glu47 and Lys480) were identified in P. donghuensis HYS. Transmission electron microscopy (TEM) showed that GtrA, GtrB and GtrII were involved in the glucosylation of lipopolysaccharide (LPS) O-antigen in P. donghuensis HYS. Furthermore, colony-forming unit (CFU) assays showed that GtrA, GtrB and GtrII significantly enhanced P. donghuensis HYS colonization in the gut of C. elegans, and glucosylation of LPS O-antigen and colonization in the host intestine contributed to the pathogenicity of P. donghuensis HYS. In addition, experiments using the worm mutants ZD101, KU4 and KU25 revealed a correlation between P. donghuensis HYS virulence and the TIR-1/SEK-1/PMK-1 pathways of the innate immune p38 MAPK pathway in C. elegans. In conclusion, these results reveal that the specific virulence gene cluster gtrA/B/II contributes to the unique pathogenicity of HYS compared with other pathogenic Pseudomonas, and that this process also involves C. elegans innate immunity. These findings significantly increase the available information about GtrA/GtrB/GtrII-based virulence mechanisms in the genus Pseudomonas.  相似文献   

5.
Twenty-nine Anopheles gambiae candidate Odorant Binding Proteins (OBPs) were characterized for similarity to OBPs of Drosophila melanogaster and other insects. Twenty-five of these sequences were identified by BLAST searching the A. gambiae genome database. Several A. gambiae sequences were significantly similar to the D. melanogaster OBPs OS-E/OS-F, LUSH and PBPRP2/PBPRP5. Exon boundary comparisons suggests that two A. gambiae genes are orthologues of OS-E and OS-F, justifying the names AgamOS-E (EAA01090, AF437886) and AgamOS-F (EAA14641, AF437884). If these are orthologues, then the gene duplication establishing the OS-E and OS-F lineages predated the divergence of mosquitoes and flies. The identification of orthologous OBPs and other chemosensory genes between D. melanogaster and A. gambiae should accelerate the transfer of physiological and behavioral information between these two species.  相似文献   

6.
Lipopolysaccharide (LPS) is the main surface constituent of Gram-negative bacteria. Lipid A, the hydrophobic moiety, outer monolayer of the outer cell membrane forms the major component of LPS. Immunogenic Lipid A is recognized by the innate immune system through the TLR 4/MD-2 complex. Pseudomonas aeruginosa PAO1, a Gram-negative bacterium is known to cause nosocomial infection and known for its adaptation to adverse environmental conditions. Pseudomonas aeruginosa can infect a broad host spectrum including Caenorhabditis elegans, a simple free living soil nematode. Here, we reveal that PAO1 modifies its Lipid A during the host interaction with C. elegans. The penta-acylated form of Lipid A was identified by using matrix assisted laser desorption ionization–time of flight analysis and the β-(1,6)-linked disaccharide of glucosamine with phosphate groups, 2 and 2′ amide linked fatty acid chain and 3 and 3′ ester linked fatty acids were investigated for the modification using the non destructive 1H NMR, spin–lattice (T 1) relaxation measurement, differential scanning calorimetry. T 1 relaxation measurements showed that the 2 and 2′ amide linked fatty acid chain, –CH in the glucosamine disaccharide of PAO1 lipid A, in an exposed host had a different spin lattice relaxation time compared to an unexposed host and the findings were reconfirmed using in vitro human corneal epithelial cells cell lines. Furthermore, scanning electron microscope and confocal laser scanning microscopy analysis revealed that the P. aeruginosa PAO1 biofilm formation was disturbed in the exposed host condition. The daf-12, daf-16, tol-1, pmk-1, ins-7 and ilys3 immune genes of C. elegans were examined with live bacterial and isolated lipid moiety infection and the expression was found to be highly specific. Overall, the present study revealed that PAO1 modified its 2 and 2′ amide linked fatty acid chain in the lipid A of PAO1 LPS during the exposed host condition.  相似文献   

7.
8.
The increasing prevalence of metabolic syndrome-related diseases, including type-2 diabetes and obesity, makes it urgent to develop new alternative therapies, such as probiotics. In this study, we have used Caenorhabditis elegans under a high-glucose condition as a model to examine the potential probiotic activities of Pediococcus acidilactici CECT9879 (pA1c). The supplementation with pA1c reduced C. elegans fat accumulation in a nematode growth medium (NGM) and in a high-glucose (10 mM) NGM medium. Moreover, treatment with pA1c counteracted the effect of the high glucose by reducing reactive oxygen species by 20%, retarding the aging process and extending the nematode median survival (>2 days in comparison with untreated control worms). Gene expression analyses demonstrated that the probiotic metabolic syndrome-alleviating activities were mediated by modulation of the insulin/IGF-1 signaling pathway (IIS) through the reversion of the glucose-nuclear-localization of daf-16 and the overexpression of ins-6 and daf-16 mediators, increased expression of fatty acid (FA) peroxisomal β-oxidation genes, and downregulation of FA biosynthesis key genes. Taken together, our data suggest that pA1c could be considered a potential probiotic strain for the prevention of the metabolic syndrome-related disturbances and highlight the use of C. elegans as an appropriate in vivo model for the study of the mechanisms underlying these diseases.  相似文献   

9.
During spermatogenesis, the Golgi apparatus serves important roles including the formation of the acrosome, which is a sperm-specific organelle essential for fertilization. We have previously demonstrated that D. melanogaster ATP-dependent Citrate Lyase (ATPCL) is required for spindle organization, cytokinesis, and fusome assembly during male meiosis, mainly due to is activity on fatty acid biosynthesis. Here, we show that depletion of DmATPCL also affects the organization of acrosome and suggest a role for this enzyme in the assembly of Golgi-derived structures during Drosophila spermatogenesis.  相似文献   

10.
The courtship behaviors and cuticular hydrocarbons ofDrosophila rajasekari are described. Sexually mature males orient, tap, follow, vibrate their abdomens, extend and vibrate their wings, and attempt copulation during courtship. They perform these behaviors in response to immature and matureD. rajasekari of both sexes, and their courtship activities are facilitated by light. The predominant cuticular hydrocarbon found in both sexes is (Z,Z)-7,11-heptacosadiene (HCD), a compound known to be used as a courtship-stimulating sex pheromone by another fruit fly,D. melanogaster. Therefore, it is not surprising thatD. melanogaster males actively court both males and females from theD. rajasekari stock. However, HCD is apparently not used byD. rajasekari as a courtship-stimulating pheromone since matureD. rajasekari males do not courtD. melanogaster females, which produce large quantities of HCD.  相似文献   

11.
12.
13.
The Y chromosome is one of the sex chromosomes found in males of animals of different taxa, including insects and mammals. Among all chromosomes, the Y chromosome is characterized by a unique chromatin landscape undergoing dynamic evolutionary change. Being entirely heterochromatic, the Y chromosome as a rule preserves few functional genes, but is enriched in tandem repeats and transposons. Due to difficulties in the assembly of the highly repetitive Y chromosome sequence, deep analyses of Y chromosome evolution, structure, and functions are limited to a few species, one of them being Drosophila melanogaster. Despite Y chromosomes exhibiting high structural divergence between even closely related species, Y-linked genes have evolved convergently and are mainly associated with spermatogenesis-related activities. This indicates that male-specific selection is a dominant force shaping evolution of Y chromosomes across species. This review presents our analysis of current knowledge concerning Y chromosome functions, focusing on recent findings in Drosophila. Here we dissect the experimental and bioinformatics data about the Y chromosome accumulated to date in Drosophila species, providing comparative analysis with mammals, and discussing the relevance of our analysis to a wide range of eukaryotic organisms, including humans.  相似文献   

14.
15.
CFD simulations have been carried out for the predictions of flow pattern in bubble column reactors using 1D, 2D and 3D k-ε models. An attempt has been made to develop a complete correspondence between the operation of a real column and the simulation. Attention has been focused on the cylindrical bubble columns because of their widespread applications in the industry. All the models showed good agreement with the experimental data for axial liquid velocity and the fractional gas hold-up profiles. However, as regards to eddy diffusivity, only the 3D model predictions agree closely with the experimental data.The CFD model has been extended for the estimation of an axial dispersion coefficient (DL) using 1D, 2D and 3D models. Excellent agreement was found only between the experimental values and the 3D predictions. The 1D and 2D simulations, however, yielded DL values, which were lower by 25-50%. For this, a mechanistic explanation has been provided.  相似文献   

16.
17.
18.
19.
20.
G6PD is required for embryonic development in animals, as severe G6PD deficiency is lethal to mice, zebrafish and nematode. Lipid peroxidation is linked to membrane-associated embryonic defects in Caenorhabditis elegans (C. elegans). However, the direct link between lipid peroxidation and embryonic lethality has not been established. The aim of this study was to delineate the role of lipid peroxidation in gspd-1-knockdown (ortholog of g6pd) C. elegans during reproduction. tert-butyl hydroperoxide (tBHP) was used as an exogenous inducer. Short-term tBHP administration reduced brood size and enhanced germ cell death in C. elegans. The altered phenotypes caused by tBHP resembled GSPD-1 deficiency in C. elegans. Mechanistically, tBHP-induced malondialdehyde (MDA) production and stimulated calcium-independent phospholipase A2 (iPLA) activity, leading to disturbed oogenesis and embryogenesis. The current study provides strong evidence to support the notion that enhanced lipid peroxidation in G6PD deficiency promotes death of germ cells and impairs embryogenesis in C. elegans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号