首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Applied Clay Science》2010,47(4):414-417
A composite hydrogel (CH) with much improved mechanical and swelling properties was prepared using an ionic monomer and acid-activated Laponite XLS which was used as a cross-linking agent. Addition of acid-activated clay solved the gelation problem when ionic monomers were added to clay mineral dispersions. Reaction of Laponite XLS with sulfuric acid yielded amorphous silica. A dispersion of the acid-activated Laponite and the monomers was used to synthesize composite hydrogels by in-situ polymerization. The FT-IR spectra and rheological results of the composite hydrogels demonstrated the formation of a network. The equilibrium swelling ratios of composite hydrogels (> 6000 g/g) were more than 18 times larger than traditional organic cross-linked hydrogels. The moduli G′ and G″ in the observed frequency range were about 4 and 10 times larger than those of organic cross-linked hydrogel (OR gel). The improvement in both the equilibrium swelling ratio and mechanical strength was attributed to the homogeneous cross-linked network structure.  相似文献   

2.
《Applied Clay Science》2010,47(4):346-350
To look for economic substitute of Laponite, two kinds of clay minerals purchased in China were chosen to prepare nanocomposite hydrogels. Structure, morphology, temperature-sensitivity and swelling behavior were investigated by XRD, SEM, DSC and gravimetric method. In comparison with hydrogel cross-linked by Laponite XLG, the hydrogel with hectorite (Lvjie trademark) or montmorillonite (G-105) as cross-linker exhibited higher swelling ratios as well as faster response rate. In the case of temperature-sensitivity, the volume phase transition temperature (VPTT) of the hydrogels cross-linked by hectorite (Lvjie trademark) and montmorillonite (G-105) was 31–33 °C, slightly different from hydrogels with Laponite XLG. The hydrogel with montmorillonite (G-105) was brown and fragile. The hectorite (Lvjie trademark) appeared as optimal substitute of Laponite in hydrogels because the prepared hydrogel exhibited high swelling ratio, rapid response rate, excellent thermal responsibility, good dispersion in hydrogel matrix and high storage modulus.  相似文献   

3.
Laponite or graphene oxide (GO) is usually used as a multifunctional crosslinker or a nanofiller to improve the nanocomposite gel strength. To explore the strengthening mechanism of GO/Laponite‐based dual nanocomposite hydrogels, we synthesized a dual nanocomposite hydrogel through in situ polymerization of acrylamide (AM) in the dispersion of GO and Laponite. The interactions between GO and Laponite were confirmed by rheological test. GO and Laponite nanosheets were exfoliated well and dispersed uniformly in the hydrogels at low concentration of GO. Crosslinking network and thermal behaviors were investigated with respect to the concentration of GO and Laponite. The gel exhibited a high mechanical strength of 391 kPa with extensibility of 1420% and a high toughness of 2.58 MJ/m3, which was expected to be applied in biological engineering field. GO is not a much more effective agent than Laponite due to formation of GO aggregates in high concentration of GO. This work provides a guidance for the synthesis of tough dual nanocomposite hydrogels. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44963.  相似文献   

4.
A series of high hectorite content nanocomposite Poly (N-isopropylacrylamide), (PNIPAAm), hydrogels have been successfully synthesized by choosing a special kind of hectorite (Laponite XLS) modified by tetrasodium pyrophosphate. It was found that these hydrogels show surprising mechanical properties (i.e. tensile strength: 1 MPa, elongation at break: 1400%) and complicated deswelling behavior, which are due to the high clay content of the hydrogels and ionic dispersant contained in Laponite XLS, respectively.  相似文献   

5.
Combining clay minerals containing silica with polymers can improve the performance of polymers in biomedical applications by the synergistic combination of physico-chemical and biological properties of both phases. In this study, Laponite® — a synthetic biocompatible and biodegradable silicate clay mineral, was combined with alginate to improve alginate mechanical and biological characteristics. The physico-chemical properties (porosity, degradation, swelling, crystalline structure, compressive strength, and injectability) and biological responses (cytotoxicity and cell morphology) of the Laponite/alginate nanocomposites were investigated in the study. The results showed that the incorporation of Laponite into alginate significantly enhanced alginate compression strength without hindering its injectability when the percentage of clay mineral was below 50%. The prepared clay polymer nanocomposites (CPN) were not toxic and the viability of cells cultured in its extract was indeed higher than alginate alone. However, these prepared CPN poorly supported cell adhesion, probably due to the high degradation rate of the materials.  相似文献   

6.
Nanocomposite hydrogels were prepared by free‐radical polymerization of the monomers acrylamide (AAm), N,N‐dimethylacrylamide (DMA), and N‐isopropylacrylamide (NIPA) in aqueous clay dispersions at 21°C. Laponite XLS was used as clay nanoparticles in the hydrogel preparation. The hydrogels based on DMA or NIPA monomers exhibit much larger moduli of elasticity compared with the hydrogels based on AAm monomer. Calculations using the theory of rubber elasticity reveal that, in DMA‐clay or NIPA‐clay nanocomposites, both the effective crosslink density of the hydrogels and the functionality of the clay particles rapidly increase with increasing amount of Laponite up to 10% (w/v). The results suggest that DMA‐clay and NIPA‐clay attractive interactions are stronger than AAm‐clay interactions due to the formation of multiple layers on the nanoparticles through hydrophobic associations. It was also shown that, although the nanocomposite hydrogels do not dissolve in good solvents such as water, they dissolve in dilute aqueous solutions of acetone or poly(ethylene oxide) of molecular weight 10,000 g/mol, demonstrating the physical nature of the crosslink points. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
A novel poly[(1,2-ethylenediamino) (2-hydroxy-1,3-propanedily) chloride]/ Laponite/polyacrylic acid (PEDAECH/Laponite/PAA) hydrogel was synthesized by two-step solution polymerization combining nanocomposite (NC) strategy with double network (DN). The structural characteristics of resulting hydrogels were investigated by Fourier Transform infrared spectrum (FTIR) and Transmission Electron Microscopy (TEM). A core shell structure was observed in PEDAECH/Laponite composite. The swelling and mechanical strength of the resulting hydrogels were measured when PEDAECH/Laponite composite dose varied. The novel hydrogel achieved a high compressive stress of 148.0 KPa even in higher water content of 98.7% when the PEDAECH/Laponite composite dose is 0.05 ml, the dose of AA was 3.6 ml, N, N??-methylenebisacrylamide (MBAM) dose was 0.04 wt% (based on the weight of AA) and reaction temperature was 0 °C, Based on the cyclic compression studies, there is a small decline in the maximum stress of the hydrogels at the fixed strain of 45% even under three cyclic compressions.  相似文献   

8.
以无机黏土为交联剂制备了聚(N-异丙基丙烯酰胺)/海藻酸钠/黏土(PINPA/SA/clay)复合水凝胶,通过红外光谱、X射线衍射和SEM对凝胶的结构和形态进行了表征,并研究了凝胶的溶胀动力学和力学性能。结果表明:黏土的结晶结构已被破坏,黏土规整的片层被剥离并在凝胶中无序分布,起到交联剂的作用;随黏土含量的增加,凝胶网络交联密度增加,孔洞的孔径减小,溶胀速度下降。另外,PINPA/SA/clay凝胶显示了良好的力学性能,断裂伸长率超过1000%。  相似文献   

9.
This study presents the fabrication and characterization of cotton textile fibers coated with hydrogels containing silver and Graphene or Graphene Oxide nanoparticles using 1-hexyl-3-methyl-imidazolium (HMIMPF6) ionic liquid (IL) as carbon filler dispersant. Acrylic acid/Itaconic acid (AA-IA) hydrogels are synthesized by polymerizing an acrylic acid-itaconic acid aqueous (80/20 v/v) solution and mixed with 2-2-Azobis (2-methylpropionamide) diclorohydrate, and N,N´-methylenbis (acrylamide). Then silver nanoparticles are generated throughout the hydrogel networks using in situ method by incorporating the silver ions and subsequent reduction with sodium borohydride. Then a cotton textile fiber substrate was coated with this hydrogel. Finally, graphene or graphene oxide was added to the textile substrate already impregnated with hydrogel and silver nanoparticles. In order to favor the dispersion of the carbon nano-structures in the system, an IL was used. The influence of these nanocomposite hydrogels on the properties of textile fiber were investigated by infrared spectroscopy (ATR), scanning electron microscopy (SEM), inductively coupled plasma mass spectroscopy (ICP) and antibacterial tests against Staphylococcus aureus (Gram positive) and Escherichia coli (Gram negative). The effect of each and combined fillers dispersion on antimicrobial properties were determined. Cotton fibers coated with hydrogel containing silver nanoparticles and graphene showed better results when the ionic liquid was used. Graphene showed greater antimicrobial efficiency than graphene oxide. It was proved that the textiles coated with hydrogels containing these fillers had an excellent antibacterial ability and are a good option to be used for medical applications such as wounds and burns dressing.  相似文献   

10.
以甲基丙烯酸(MAA)为单体,过硫酸钾(KPS)为引发剂,无机纳米粒子Laponite或者N,N'-亚甲基双丙烯酰胺(BIS)为交联剂,通过原位自由基聚合的方法分别合成了纳米复合聚甲基丙烯酸凝胶和传统型聚甲基丙烯酸凝胶,并利用红外、流变、溶胀性能测试、剥离强度测试等手段对凝胶的性能进行了表征。比较了在不同单体(MAA)含量、体系pH值下,Laponite含量和BIS含量对物理交联法和化学交联法制备的凝胶的交联密度的影响,以及两种凝胶溶胀度随溶液pH值以及温度的变化关系。研究表明:增加单体MAA的含量、增加交联剂Laponite或BIS的含量,以及降低体系的pH值有利于凝胶网状结构的形成。化学交联的传统型聚甲基丙烯酸凝胶具有明显的pH敏感性和温度敏感性,而物理交联的纳米复合聚甲基丙烯酸凝胶具有良好的粘结性能。  相似文献   

11.
Despite recent significant progress in fabricating tough hydrogels, it is still a challenge to realize high strength, large stretchability, high toughness, rapid recoverability, and good self‐healing simultaneously in a single hydrogel. Herein, Laponite reinforced self‐cross‐linking poly(N‐hydroxyethyl acrylamide) (PHEAA) hydrogels (i.e., PHEAA/Laponite nanocomposite [NC] gels) with dual physically cross‐linked network structures, where PHEAA chains can be self‐cross‐linked by themselves and also cross‐linked by Laponite nanoplatelets, demonstrate integrated high performances. At optimal conditions, PHEAA/Laponite NC gels exhibit high tensile strength of 1.31 MPa, ultrahigh tensile strain of 52.23 mm mm?1, high toughness of 2238 J m?2, rapid self‐recoverability (toughness recovery of 79% and stiffness recovery of 74% at room temperature for 2 min recovery without any external stimuli), and good self‐healing properties (strain healing efficiency of 42%). The work provides a promising and simple strategy for the fabrication of dual physically cross‐linked NC gels with integrated high performances, and helps to expand the fundamentals and applications of NC gels.  相似文献   

12.
Poly(?-lysine) (PL) hydrogels have been prepared by means of γ irradiation of PL produced by Streptomyces albulus in aqueous solutions. When the dosage of γ irradiation was 70 kGy or more and the concentration of PL in water was 1–7 wt %, transparent hydrogels (opaque hydrogels for 1–3 wt % PL concentration) could be produced. In the case of 70 kGy of γ irradiation and 5 wt % PL concentration, the specific water content (wt of absorbed water/wt of dry hydrogel) of the PL hydrogel was approximately 160. Specific water contents of PL hydrogels decreased markedly with an increase in the dosage of γ irradiation. The specific water contents were increased with an increase in PL concentration in the irradiated solution. This result indicates the presence of a radical scavenger in the PL solution. Swelling equilibria of PL hydrogels were measured in water or in aqueous solutions of various pHs or concentrations of NaCl, Na2SO4, and CaCl2. Under acid conditions, the PL hydrogel swelled due to the ionic repulsion of the protonated amino groups in the PL molecules. The degree of deswelling in electrolyte solution was smaller than that of other ionic hydrogels [poly(γ-glutamic acid), poly(acrylic acid) etc.]. In addition, the enzymatic degradations of PL hydrogel were studied at 40°C and pH 7.0 in an aqueous solution of the neutral protease [Protease A (Amano)] produced from Aspergillus oryzae. The rate of enzymatic degradation of the respective PL hydrogels was much faster than the rate of simple hydrolytic degradation. The rate of enzymatic degradation decreased with the increase in γ-irradiation dose during preparation of the PL hydrogel. © 1995 John Wiley & Sons, Inc.  相似文献   

13.
张平  兰延勋  吕满庚 《精细化工》2007,24(12):1158-1162
为了得到具有高强度和高溶胀率的纳米水凝胶(NCgels),N-异丙基丙烯酰胺通过可逆加成断裂链转移(RAFT)聚合的方法,插层在含有质量分数为0.25%~15%的可扩展的有机化的蒙脱土(Clay-S)层间并交联。结果表明,与传统水凝胶相比,该水凝胶的强度和溶胀性能得到了很大提高,并且对温度的变化具有较快的响应速率。以质量分数为5%的蒙脱土,链转移剂的质量分数为0.5%制备的纳米水凝胶为例,该水凝胶在20℃的溶胀率为450,而传统水凝胶在相同温度时的溶胀率仅为20;该水凝胶在1min内失去75%的水,在4min内失去约90%的水,而传统水凝胶在15min内仅失去66%左右的水。  相似文献   

14.
In this study, dextran hydrogels were obtained by free radical copolymerization of methacrylated dextran with acrylic acid (AAc) in aqueous solution. The fractions of dissociation of AAc units within hydrogel in response to changes in pH and ionic strength of external aqueous solution were determined by FTIR-ATR spectroscopy. The influence of small ion concentration within hydrogel on the dissociation constant of AAc follows the Debye-Hückel behavior. Based on the results from the FTIR-ATR measurements, the total ion concentration difference inside and outside the hydrogel was determined according to the Donnan equilibrium theory, taking account of the counterion condensation effect quantitatively. The swelling response of hydrogels to changes in external pH and ionic strength was governed mainly by the ionic osmotic pressure due to the accumulation of diffusible ions within hydrogels. The energy balance between the osmotic and elastic retractile responses indicates the non-Gaussian behavior of elastically effective subchains with increasing swelling.  相似文献   

15.
Poly(vinyl alcohol) (PVA) hydrogels were prepared in the presence/absence of Laponite RD (LRD) by using glutaraldehyde (GL) as chemical crosslinker. The effect of GL concentration (CHO/OH ratio between 0.02 and 0.38) and of clay addition on the PVA hydrogel properties was investigated. The swollen hydrogels showed good transparency and flexibility. LRD incorporation into the PVA hydrogel, revealed by Fourier transform infrared spectroscopy, led to a significant increase of the roughness of the dried hydrogel surface (about two times), as established by atomic force microscopy. The swelling ability was affected in a small extent by the clay addition. The elastic modulus decreased from 4680 to 3340 Pa and from 2195 to 1603 Pa by addition of 0.5% LRD into PVA hydrogels obtained with CHO/OH ratio of 0.02 and 0.06, respectively. The LRD addition reduced the gelation time determined by in situ rheological monitoring of PVA crosslinking reaction. The experimental investigations showed that there is an optimum CHO/OH ratio of 0.02 for which the PVA/LRD hybrid hydrogel presents the properties required by a targeted application, as for example support material for wound dressings. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46661.  相似文献   

16.
Shape memory hydrogels (SMHs) have been the subject of great interest in recent years. However, there were few reports on the simultaneous multiple shape memory and high mechanical performance. Therefore, a novel nanocomposite (NC) hydrogel poly (acrylic acid)/Chitosan/ Laponite (PAA/CS/Laponite) was developed by using Laponite as physical cross-linker. In order to achieve three temporary shapes, the PAA/CS/Laponite was soaked in iron chloride hexahydrate (FeCl3), sodium hydroxide (NaCl) and sodium hydroxide (NaOH) respectively to (a) form metal coordination; (b) gain the chains entanglement of chitosan; (c) get the microcrystalline structure of chitosan. The maximum shape fixity ratio of PAA/CS/Laponite can reach 100% in 1 minute and it can be restored its original shape within 5 minutes. Moreover, PAA/CS/Laponite showed excellent mechanical performance. The maximum tensile and compressive strengths were 0.73 MPa and 13.1 MPa. By comparison with PAA/CS obtained from our previous work, the tensile strength, elongation at break and compressive strength increased by 2.21 times, 1.46 times, and 3.26 times respectively. Scanning electron microscopy (SEM) showed that the obtained sample has uniform honeycomb network structures which can effectively explain why the gel has strong mechanical performance. These characteristics make PAA/CS/Laponite have huge application potential in reality.  相似文献   

17.
Hydrogel was synthesized from acrylamide and 2‐acryloylamido‐2‐methylpropanesulfonic acid monomers (ratio: 50/50 wt %) and crosslinked with 0.25 wt % of methylene‐bisacrylamide. This hydrogel was also modified by adding 4 wt % of sodium bentonite (NB). Selected properties of the hydrogels with and without NB were investigated and compared. Their water uptake was measured gravimetrically; the compression and compression creep were assessed by dynamic‐mechanical and thermo‐mechanical analysis (DMA and TMA, respectively) techniques. The friction and wear of the hydrogels were determined in a shaft(metal)‐on‐plate(hydrogel) type testing configuration under water lubrication. The hydrogel was transparent and exhibited very high equilibrium water content (>99 wt %). The latter was less affected; however, the hydrogel became slightly more hazy after NB incorporation. The crosslink density of the hydrogels was deduced from swelling and compression tests and compared with the theoretical values. Modification by NB enhanced the ultimate compression strength and reduced the related compression strain. The compression creep response under both loading and deloading strongly depended on the level of the initial load. A very low friction coefficient (~ 0.003) and a relatively high specific wear rate (~ 0.05 mm3/N m) were registered under water lubricated sliding wear using a metallic counterpart with high surface roughness. Scanning electron microscopy combined with energy dispersive spectroscopy delivered additional information on the NB dispersion and surface structure of the hydrogels. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

18.
Poly(n‐isopropylacrylamide) Laponite (PNIPAM‐Lap) hybrid hydrogels, which use the synthetic clay Laponite as a crosslinker, permanently adsorb cationic laser dyes out of solution. This proof‐of‐concept expounds on this capability by adsorbing an intermediate dye molecule and using it as the foundation for successfully conjugating microbial antibodies to the surface of a PNIPAM hydrogel. The study involves using acriflavinium chloride molecules, adsorbed by a PNIPAM‐Lap hydrogel from an acriflavine laser dye solution, as an intermediate molecule to attach antibodies raised against E. coli to the hydrogel and demonstrate cell capture. Furthermore, this system exemplifies a novel biotechnological platform for greatly expanding PNIPAM hydrogels' capabilities and applicability through conjugation chemistry to surface‐bound molecules. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41557.  相似文献   

19.
Volkan Can  Oguz Okay 《Polymer》2007,48(17):5016-5023
The swelling behavior and the elastic properties of nanocomposite hydrogels have been investigated. The hydrogels were prepared by free-radical polymerization of the monomers acrylamide (AAm), N,N-dimethylacrylamide (DMA), and N-isopropylacrylamide (NIPA) in aqueous clay suspensions at 21 °C. Laponite with a radius of gyration in distilled water of 20 nm was used as clay particles in the hydrogel preparation. The reactions with AAm monomer were carried out in the presence of the chemical crosslinker N,N′-methylenebis(acrylamide) (BAAm). It was found that the volume of nanocomposite hydrogels immersed in water rapidly increases and attains a maximum value after about one day. Surprisingly, further increase in the swelling time results in the deswelling of the gels until they reach a limiting swelling ratio after about 5 days. This unusual swelling behavior is observable only when the clay concentration in the hydrogel is above the overlap threshold c. Swelling measurements combined with the elasticity tests show that the effective crosslink density first decreases, but then increases with increasing time of swelling of the hydrogels. The results were explained in terms of the rearrangements of the highly entangled polymer chains and clay particles during the gel volume change.  相似文献   

20.
Hydrogels responsive to pH change based on poly(acrylamide-co-2-acrylamido-2-methylpropane sulfonic acid) are synthesized. The hydrogels are characterized in terms of FTIR spectroscopy, swelling–deswelling behavior, morphological analysis and dye removal properties. The swelling of the hydrogel is strongly dependent on the copolymer composition, pH and ionic strength of the medium. The dye removal efficiency (DRE) also depends on the copolymer composition, pH and ionic strength. Pseudo-second-order kinetics and Langmuir isotherms model, respectively, are the best-fit models for the present gel. The cellular structures of the hydrogels are clearly revealed by optical microscopic and SEM images.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号