首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 805 毫秒
1.
The present study evaluates ratcheting response of materials by means of the Armstrong–Frederick (A–F) hardening rule, the modified A–F rule (Bower's model), and further modifications of the hardening rule based on new introduced coefficients. The implemented modifications on the A–F‐based hardening rule aims to address stages of ratcheting over stress cycles. The modified hardening rule predicts the ratcheting strain rate decay over stage I and the constant rate of strain accumulation during stage II. The modified hardening rule consisted of the coefficients of the hardening rule controlling stress–strain hysteresis loops generated over stress cycles during ratcheting process (Bower's modification on A–F rule) plus the coefficients controlling rates over stages of materials ratcheting deformation. Stress–strain‐dependent coefficients in the modified rule are responsible to compromise overprediction of ratcheting of A–F during stage I and the premature plastic shakedown beyond stage I induced by Bower's model. Ratcheting strain rate coefficients improved the hardening rule capability to calibrate and control the rate of ratcheting in stages I and II and enabled the modified hardening rule to predict ratcheting strain over a prolonged domain of stress cycles. The modified hardening rule was employed to assess ratcheting response of 304, 42CrMo, 316L steel and copper samples under uniaxial loading conditions. The predicted ratcheting values based on the modified hardening rule and the experimental ratcheting strains were found in good agreements.  相似文献   

2.
This study intends to compare ratcheting response of 42CrMo, 1020, SA333 and SS304 steel alloys over uniaxial stress cycles evaluated by a parametric ratcheting model and Bower's hardening rule. The parametric ratcheting equation was formulated to describe triphasic stages of ratcheting deformation over stress cycles. Mechanistic parameters of mean stress, stress amplitude, material properties and cyclic softening/hardening response of materials were employed to calibrate parametric equation. Based on the framework of cyclic plasticity theory, the modified Armstrong–Frederick nonlinear hardening rule of Bower was employed to assess ratcheting response of steel alloys under uniaxial stress cycles. Bower's model was chosen mainly due to simplicity of the model and its lower number of constants required to predict ratcheting strain over stress cycles as compared with other hardening rules. Ratcheting strain values predicted by Bower's model showed good agreements over stage I of stress cycles as compared with experimental values of ratcheting strain. Beyond of stage I stress cycles, Bower ratcheting strain rate stayed constant resulting in an arrest in ratcheting process. The predicted ratcheting strains based on the parametric equation were found in good agreements over three stages of ratcheting as compared with those of experimentally obtained.  相似文献   

3.
Experimental Study on the Uniaxial Cyclic Deformation of 25CDV4.11 Steel   总被引:1,自引:0,他引:1  
The strain cyclic characteristics and ratcheting behavior of 25CDV4.11 steel were studied by the experiments under uniaxial cyclic loading with relatively high cyclic number and at room temperature. The cyclic hardening/softening feature of the material was first observed under the uniaxial strain cycling with various strain amplitudes. Then, the ratcheting behavior of the material was researched in detail, and the effects of stress amplitude and mean stress on the ratcheting were discussed under uniaxial asymmetrical stress cycling. Comparing with the experimental results of SS316L stainless steel, it is concluded that the material exhibits remarkable cyclic softening feature, and then a special ratcheting behavior is caused. Some conclusions useful to establish corresponding constitutive model are obtained.  相似文献   

4.
The present study predicts ratcheting response of SS304 tubular stainless steel samples using kinematic hardening rules of Ohno–Wang (O–W), Chen‐Jiao‐Kim (C–J–K) and a newly modified hardening rule under various stress‐controlled, and combined stress‐ and strain‐controlled histories. The O–W hardening rule was developed based on the critical state of dynamic recovery of backstress. The C–J–K hardening rule further developed the O–W rule to include the effect of non‐proportionality in ratcheting assessment of materials. The modified rule involved terms , and in the dynamic recovery of the Ahmadzadeh–Varvani (A–V) model to respectively track different directions under multiaxial loading, account for non‐proportionality and prevent plastic shakedown of ratcheting data over multiaxial stress cycles. The O–W model persistently overestimated ratcheting strain over the multiaxial loading paths. The C–J–K model further lowered this overprediction and improved the predicted ratcheting curves. The predicted ratcheting curves based on the modified model closely agreed with experimental data under various loading paths.  相似文献   

5.
6.
An experimental study was carried out on the strain cyclic characteristics and ratcheting of 316L stainless steel subjected to uniaxial and multiaxial cyclic loading. The strain cyclic characteristics were researched under the strain-controlled uniaxial tension-compression and multiaxial circular paths of loading. The ratcheting tests were conducted for the stress-controlled uniaxial tension-compression and multiaxial circular, rhombic and linear paths of loading with different mean stresses, stress amplitudes and histories. The experiment results show that 316L stainless steel features the cyclic hardening, and its strain cyclic characteristics depend on the strain amplitude and its history apparently. The ratcheting of 316L stainless steel depends greatly on the Values of mean stress, stress amplitude and their histories. In the meantime, the shape of load path and its history also apparently influence the ratcheting.  相似文献   

7.
Fatigue failure, ratcheting behaviour and influence of pre‐fatigue on fatigue behaviour were investigated under uniaxial cyclic loading for CK45 steel at room temperature. The fatigue life was recorded for various stress ratios, and then, three mean stress models were considered. The Walker model showed an acceptable accuracy in comparison with Smith–Watson–Topper and Park et al. models. The ratcheting strains were measured for various loading conditions in order to evaluate the impact of mean stress, stress amplitude and stress ratio on ratcheting behaviour. The experimental results showed that the ratcheting strain increased with increasing mean stress, stress amplitude and stress ratio. In addition, the results of the post‐ratcheting‐fatigue tests showed that although the fatigue life decreased with increasing pre‐ratcheting strain (the ratcheting strain that is accumulated in pre‐fatigue), the loading condition that pre‐fatigue experiments were conducted has a significant effect on subsequent fatigue behaviour.  相似文献   

8.
Ozgen U. Colak   《Materials & Design》2008,29(8):1575-1581
Ratcheting, which is the strain accumulation observed under the unsymmetrical stress controlled loading and non-proportional loadings, is modeled using the simplified viscoplasticity theory based on overstress (VBO). The influences of kinematic hardening laws on the uniaxial and multiaxial non-proportional ratcheting behavior of CS 1026 carbon steel have been investigated. The following kinematic hardening rules have been considered: the classical kinematic hardening rule, the kinematic hardening rules introduced by Armstrong–Frederick, Burlet–Cailletaud and the modified Burlet–Cailletaud. The investigated loading conditions include uniaxial stress controlled test with non-zero mean stress, and axial strain controlled cyclic test of thin-walled tubular specimen in the presence of constant pressure. Numerical results are compared with the experimental data obtained by Hassan and Kyriakides [Hassan T, Kyriakides S. Ratcheting in cyclic plasticity, part I: uniaxial behavior. Int J Plast 1992;8:91–116] and Hassan et al. [Hassan T, Corona E, Kyriakides S. Ratcheting in cyclic plasticity, part I: multiaxial behavior. Int J Plast 1992;8:117–146]. It is observed that all investigated kinematic hardening rules do not improve ratcheting behavior under multiaxial loading, but over-prediction still exists.  相似文献   

9.
The ratcheting and strain cyclic characteristics of U71Mn rail steel were experimentally researched under uniaxial and non-proportionally multiaxial cyclic loading at room temperature. The effects of cyclic strain, stress and their histories on strain cyclic characteristics and ratcheting were studied, respectively. It is shown that: U71Mn rail steel exhibits a cyclic stabilization and non-memorization for previous loading history under strain cycling; however, the ratcheting of the material depends greatly not only on the current values of mean stress and stress amplitude, but also on their histories; the non-proportionality of multiaxial loading path only causes a negligible additional hardening for the material. Based on the Ohno–Wang non-linear kinematic hardening model [Int. J. Plast. 9 (1993) 375, 391], the uniaxial and multiaxial ratcheting behaviours of the material were simulated by a visco-plastic constitutive model. The simulated results are in good consistence with the experimental ones.  相似文献   

10.
This study intends to formulate ratcheting strain evolution in steel alloys of 42CrMo, 20CS, SA333 Gr. 6 C‐Mn and OFHC copper over uniaxial stress cycles. Stages of ratcheting deformation were related to stress cycles, lifespan, mechanical properties and amplitude and mean stress components by means of linear and nonlinear functions. Terms of mechanical properties in the ratcheting formulation enabled to characterize ratcheting response of various materials over life cycles. These terms were further employed to interpret the influence of softening/hardening response of materials on ratcheting deformation. Ratcheting data for 42CrMo, 20CS, SA333 steels and OFHC copper reported in the literature were employed to evaluate the proposed ratcheting formulation. The predicted ratcheting strain values based on the proposed equation were found in good agreements as compared with the experimental data.  相似文献   

11.
The ratcheting behaviour of Inconel 718 was investigated at 649 °C under uniaxial cyclic loading. Stress-control tests have been conducted at various combinations of stress amplitude and mean stress. The ratcheting strain at failure increases with increasing mean stress for a given stress amplitude and with decreasing stress amplitude for a given mean stress. Fatigue lives were correlated using three mean stress models: the Goodman equation, the Smith–Watson–Topper (SWT) parameter and the Walker parameter. It has been shown that the Goodman equation and the SWT parameter do not correlate life data, while the Walker parameter yields acceptable correlation. The SWT parameter was modified to incorporate the ratcheting effect. The new parameter is found to yield correlation similar to that of the Walker parameter.  相似文献   

12.
The present study examines ratcheting response of steel samples with various notch diameters through conducting several cyclic tests. Ratcheting strain values were measured through strain gauges mounted at different distances from the notch root. Local ratcheting at the notch region was highly influenced by notch diameter, notch shape, distance from the notch root, and magnitude of the nominal mean/amplitude of loading cycles. Nominal force‐controlled cycles were kept below the yield point and the Neuber's rule accommodated for the maximum/minimum local stress components along those local strains measured through the strain gauges at the notch region. Plastic strains at the vicinity of notch root over loading cycles were further accumulated by means of the Chaboche hardening model. The local ratcheting strain while progressed at the notch root plastic zone over loading cycles resulted in mean stress relaxation controlled by the model.  相似文献   

13.
The present study intends to characterize ratcheting response of several steel alloys subject to asymmetric loading cycles through coupling the Ahmadzadeh‐Varvani kinematic hardening rule with isotropic hardening rules of Lee and Zavrel, Chaboche, and Kang. The Ahmadzadeh‐Varvani kinematic hardening rule was developed to address ratcheting progress over asymmetric stress cycles with relatively a simple framework and less number of coefficients. Inclusion of isotropic hardening rules to the framework improved ratcheting response of materials mainly over the first stage of ratcheting. Lee and Zavrel model (ISO‐I) developed an exponential function to account for accumulated plastic strain as yield surface is expanded over stage I and early stage II of ratcheting. Isotropic models by Chaboche (ISO‐II) and Kang (ISO‐III) encountered yield surface evolution in the framework by introducing an internal variable that takes into account the prior maximum plastic strain range. The choice of isotropic hardening model coupled to the kinematic hardening model is highly influenced by material softening/hardening response.  相似文献   

14.
15.
This study intends to investigate the concurrent interaction of fatigue damage and ratcheting strain in two commonly used steel alloys of (American Society for Testing and Materials) ASTM A‐516 Gr.70 and 42CrMo, respectively for pressure vessels and high grade machinery parts over uniaxial stress cycles. Ratcheting extension and fatigue damage progress were both characterized cycle‐by‐cycle over life cycles of tested materials. The interaction of ratcheting and fatigue damage was defined based on mechanistic parameters involving the effects of mean stress, stress amplitude and cyclic softening/hardening response of materials. The extent of ratcheting effect was defined by product of average ratcheting strain per cycle, and maximum stress value during a cycle, while fatigue damage was analysed based on earlier developed energy‐based models of Xia–Ellyin, and Smith–Watson–Topper. Overall damage due to ratcheting and fatigue was calibrated through a weighting factor at various mean/ cyclic amplitude stresses. An algorithm was developed to evaluate overall damage due to ratcheting and fatigue stress cycles of materials subjected to various mean and amplitude stresses. The estimated lives at different mean stresses and stress amplitudes for ASTM A‐516 Gr.70 and 42CrMo samples showed good agreements as compared with those of reported experimental data.  相似文献   

16.
Cyclic plastic deformation phenomena include the Bauschinger effect, cyclic hardening/softening, strain range effect, loading history memory, ratcheting, mean stress dependent hardening, mean stress relaxation and non-proportional hardening. In this work, different cyclic plastic deformation responses of piping materials (SA333 C-Mn steel and 304LN stainless steel) are experimentally explored. Cyclic hardening/softening is depends upon loading types (i.e. stress/strain controlled), previous loading history and strain/stress range. Pre-straining followed by LCF and mean stress relaxation shows similar kind of material response. Substantial amount of non proportional hardening is observed in SA333 C-Mn steel during 90° out of phase tension-torsion loading. During ratcheting, large amount of permanent strain is accumulated with progression of cycles. Permanent strain accumulation in a particular direction causes cross-sectional area reduction and which results uncontrollable alteration of true stress in engineering stress controlled ratcheting test. In this work, true stress control ratcheting on piping materials has been carried out in laboratory environment. Effects of stress amplitude and mean stress on the ratcheting behaviors are analyzed. A comparison has also been drawn in between the true and engineering stress controlled tests, and massive difference in ratcheting life and strain accumulation is found.  相似文献   

17.
Cyclic plastic deformation characteristics of 304LN stainless steel material have been studied with two proposed cyclic plasticity models. Model MM-I has been proposed to improve the simulation of ratcheting phenomenon and model MM-II has the capability to simulate both cyclic hardening and softening characteristics of the material at various strain ranges. In the present paper, strain controlled simulations are performed with constant, increasing and decreasing strain amplitudes to verify the influences of loading schemes on cyclic plasticity behaviors through simulations and experiments. It is observed that the material 304LN exhibits non Masing characteristics under cyclic plastic deformation. The measured deviation from Masing is well established from the simulation as well as from experiment. Simulation result shows that the assumption of only isotropic hardening is unable to explain the hardening or softening characteristics of the material in low cycle fatigue test. The introduction of memory stress based cyclic hardening coefficient and an exponentially varying ratcheting parameter in the recall term of kinematic hardening rule, have resulted in exceptional improvement in the ratcheting simulation with the proposed model, MM-II. Plastic energy, shape and size of the hysteresis loops are additionally used to verify the nature of cyclic plasticity deformations. Ratcheting test and simulation have been performed to estimate the accumulated plastic strain with different mean and amplitude stresses. In the proposed model MM-I, a new proposition is incorporated for yield stress variation based on the memory stress of loading history along with the evolution of ratcheting parameter with an exponential function of plastic strain. These formulations lead to better realization of ratcheting rate in the transient cycles for all loading schemes. Effect of mean stress on the plastic energy is examined by the simulation model, MM-I. Finally, the micro structural investigation from transmission electronic microscopy is used to correlate the macroscopic and microscopic non Masing behavior of the material.  相似文献   

18.
A series of displacement-controlled tests were conducted for sintered nanosilver lap-shear joints at different loading rates and temperatures. The relationship between force and displacement was studied. It was found that higher loading rate or lower temperature caused higher stress–strain response of the sintered nanosilver joint. Force-controlled cyclic tests were also performed at different mean forces, force amplitudes, dwell time at peak force, and temperatures. The mean force, the force amplitude, and the temperature played key roles in the shear ratcheting strain accumulation. The ratcheting strain rate could be enhanced with increasing the dwell time at peak force as well. A viscoplastic constitutive model based on Ohno–Wang and Armstrong–Fedrick (OW–AF) non-linear kinematic hardening rule, and Anand model were separately embedded in ABAQUS to simulate the shear and the ratcheting behavior of the sintered nanosilver joint. It was concluded that OW–AF model could predict the ratcheting behavior of the sintered nanosilver joint better than Anand model, especially at high temperatures.  相似文献   

19.
A viscoplastic constitutive equation for polyethylene that properly describes significant strain recovery during unloading was proposed. The constitutive equation was formulated by combining the kinematic hardening creep theory of Malinin and Khadjinsky with the nonlinear kinematic hardening rule of Armstrong and Frederick. In order to describe the strain recovery, the nonlinear kinematic hardening rule was modified. First, a loading surface was defined in a viscoplastic strain space. A loading–unloading criterion was then introduced using the loading surface. Moreover, a new parameter was defined by the relationship between the loading surface and the current state of the viscoplastic strain, and the evolution equation of back stress was modified using this parameter, which has some value only during unloading. Experimental results for polyethylene were simulated by using the modified constitutive equations, and cyclic inelastic deformation in both uniaxial and biaxial states of stress was predicted. Finally, the validity of the above-described modification was verified, and the features of the constitutive equation and the deformation were discussed.  相似文献   

20.
陈旭  焦荣 《工程力学》2005,22(2):184-188,143
利用McDowell 模型对1070 钢比例和非比例循环加载条件下的棘轮效应进行了预测,通过对McDowell模型的修正,为McDowell 模型中的单轴参数Ai引入了与塑性应变累积相关的演化方程,改进后的McDowell 模型能精确的预测具有拉压平均应力的单轴棘轮效应,具有平均应力的拉扭比例加载,常轴向应力的扭转循环,非比例循环载荷以及多重步骤加载条件下单轴平均应力变化的棘轮效应,改进的模型对较大循环数的棘轮效应也能给予较好的描述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号