首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With the successful application of the flat spot friction stir welding technology to aluminum alloys, this technique was expanded to the spot lap welding of 1 mm thick mild steel in this study. It reveals that sound joints can be successfully obtained with smooth surfaces and without any internal welding defects. Two welding strategies based on the welding parameter can be used to obtain the welds that fracture through plug failure mode at high shear tensile strength. One way is to weld the sheet at low heat input in the first step and the second step is used to generate large stir zone and flatten the sample surface. However, the microstructure in the stir zone is not homogeneous and a coarse columnar grain structure forms at the bottom of the stir zone. Another way is to make the stir zone penetrate into the lower sheet during the first step and the second step is only aimed to flatten the sample surface. In this case, the total heat input can be reduced and the microstructure of the stir zone can be remarkably refined. The sound joints fractured along the circumstance of the stir zone and reached about 6600 N during the shear tensile tests.  相似文献   

2.
In this study, high frequency induction heating assisted spot friction stir welding was applied to 1.6 mm thick S12C low carbon steel plates. With the same welding parameter including an applied load of 2500 kg, rotation speed of 800 rpm and dwell time of 2 s, the average grain size in the stir zone slightly increased from 12.9 μm for the welds without preheating to 14.8 μm when 10 s preheating was used. However, larger joint interface was formed within the stir zone of the welds with preheating and therefore the bonding strength can be significantly increased. As a result, the shear tensile load of the joint increased from 8 kN to12.4 kN with preheating and the joint fractured through the plug failure mode rather than interfacial failure mode. It was revealed that the frictional heat generated between the rotating tool and the work-piece can be reduced to obtain sound welds by means of high frequency induction preheating.  相似文献   

3.
The stir zone microstructures and mechanical properties of dissimilar AZ91/AZ31 friction stir spot welds made using different tool designs and tool rotational speed settings are investigated. Intermingled AZ91 and AZ31 lamellae are formed in the stir zones of dissimilar spot welds made using threaded, three-flat/0.7 mm/threaded and three-flat/no-thread tools and tool rotational speeds ranging from 1500 to 3000 rpm. The intermingled lamellae have chemical compositions, which are similar to those of the upper and lower sheets in the dissimilar sandwich. The flats on the rotating tool facilitate the downward transfer of upper and lower sheet materials in the location close to the pin periphery and therefore intermingled AZ91 and AZ31 lamellae are formed in the stir zones of dissimilar spot welds produced using a three-flat tool without a thread.The distance (Y) from the tip of the hook region to the keyhole periphery has a dominant influence on the mechanical properties of dissimilar AZ91/AZ31 spot welds, since the hook regions are curved inwards towards the axis of the rotating tool. The highest failure load properties and largest Y-values are found in dissimilar spot welds made using threaded and three-flat/0.7 mm/threaded tools and tool rotational speeds from 1500 to 3000 rpm. Dissimilar spot welds made using a rotational speed of 1000 rpm have the smallest Y-values and the lowest failure load properties.  相似文献   

4.
Solid-state ultrasonic spot welding (USW) was used to join Al/Mg/Al tri-layered clad sheets, aiming at exploring weldability and identifying failure mode in relation to the welding energy. It was observed that the application of a low welding energy of 100 J was able to achieve the optimal welding condition during USW at a very short welding time of 0.1 s for the tri-layered clad sheets. The optimal lap shear failure load obtained was equivalent to that of the as-received Al/Mg/Al tri-layered clad sheets. With increasing welding energy, the lap shear failure load initially increased and then decreased after reaching a maximum value. At a welding energy of 25 J, failure occurred in the mode of interfacial failure along the center Al/Al weld interface due to insufficient bonding. At a welding energy of 50 J, 75 J and 100 J, failure was also characterized by the interfacial failure mode, but it occurred along the Al/Mg clad interface rather than the center Al/Al weld interface, suggesting stronger bonding of the Al/Al weld interface than that of the Al/Mg clad interface. The overall weld strength of the Al/Mg/Al tri-layered clad sheets was thus governed by the Al/Mg clad interface strength. At a welding energy of 125 J and 150 J, thinning of weld nugget and extensive deformation at the edge of welding tip caused failure at the edge of nugget region, leading to a lower lap shear failure load.  相似文献   

5.
Refill friction stir spot welding involves a 3-piece tool consisting of a clamping ring, with rotating inner sleeve and pin components made of tool steel to join thin sheets. During the welding process, the sleeve and pin components rotate to generate frictional heat, and weld two overlapping Al-alloy sheets. The present work examines the first application of the process to join Al 2099 alloy, which has a composition containing a rather high alloy content of 1.69 wt% Li. It was noted that after a few joints were produced, the tool abruptly overheated, glowing yellow while idling at a 300 RPM rotation speed between welds, and then remained seized once rotation stopped. Optical microscopy and secondary ion mass spectroscopy revealed that high concentrations of Li accumulated between the tool pin and sleeve components, which provided an opportunity for possible multi-phase reactions, and liquid metal embrittlement of the steel tooling. This led to damage of the tool sliding surfaces and catastrophic wear, followed by seizure of the tool.  相似文献   

6.
In this work, the feasibility of friction spot welding (FSpW) of a commercial poly(methyl methacrylate) (PMMA) GS grade and a PMMA 6 N/2 wt% silica (SiO2) nanocomposite was investigated. Single-lap joints welded at rotational speeds of 1000, 2000 and 3000 rpm were produced. The analysis of the joint microstructure and material flow pattern indicated that joints could be produced using all of the tested welding conditions. However, the joint produced at 1000 rpm displayed sharp weld lines (weak links), indicating insufficient heat input, while the welds produced at 3000 rpm displayed excessive plastic deformation (bulging of the bottom plate), volumetric defects and a lack of material mixing in the welded area, associated with higher heat input. The weld produced at a rotational speed of 2000 rpm resulted in improved material mixing, which was indicated by the absence of weld lines and volumetric defects due to the more correct heat input. This welding condition was selected for further mechanical testing. Lap shear testing of PMMA GS/PMMA 6 N/2 wt% SiO2 nanocomposite single lap joints welded at 2000 rpm resulted in an average ultimate lap shear strength of 3.9 ± 0.05 MPa. These weld strength values are equal to or better than those obtained using state-of-the-art welding techniques for PMMA materials, thereby demonstrating the potential of friction spot welding for thermoplastic nanocomposites.  相似文献   

7.
The fatigue strength and failure mechanisms of defect-free (“sound”) and flaw bearing friction stir butt-welds of 3.1 mm-thick AA2198-T8 Al–Li–Cu alloy have been investigated via S–N curves at R = 0.1 using cross weld specimens. The fatigue strength of sound welds is only reduced by 10–15% at the aimed lifetime of 105 cycles compared to the base material. Joint Line Remnant (JLR) bearing welds have a similar fatigue strength as sound welds and the JLR is not the crack initiation site. Kissing Bond (KB) bearing welds that have undergone a weld root polishing show a reduction in fatigue strength by 17% compared to sound welds. For specimens loaded at or above yield strength of the weld nugget the crack systematically initiates from the KB during the first cycle, which is interpreted further using fracture mechanics. The strongest reduction, about 28% in fatigue strength, is found for welds with an initial gap between the parent sheets (GAP welds) along with initiation at intergranular surface microcracks. Kahn tear tests show a reduction in tearing resistance for the flaw bearing welds with a similar ranking as for the fatigue strength.  相似文献   

8.
Stationary shoulder friction stir welding (SSFSW) butt welded joints were fabricated successfully for AA6061-T6 sheets with 5.0 mm thickness. The welding experiments were performed using 750–1500 rpm tool rotation speeds and 100–300 mm/min welding speeds. The effects of welding parameters on microstructure and mechanical properties for the obtained welds were discussed and analyzed in detail. It is verified that the defect-free SSFSW welds with fine and smooth surface were obtained for all the selected welding parameters, and the weld transverse sections are obviously different from that of conventional FSW joint. The SSFSW nugget zone (NZ) has “bowl-like” shapes with fairly narrow thermal mechanically affected zone (TMAZ) and heat affected zone (HAZ) and the microstructures of weld region are rather symmetrical and homogeneous. The 750–1500 rpm rotation speeds apparently increase the widths of NZ, TMAZ and HAZ, while the influences of 100–300 mm/min welding speeds on their widths are weak. The softening regions with the average hardness equivalent 60% of the base metal are produced on both advancing side and retreating side. The tensile properties of AA6061-T6 SSFSW joints are almost unaffected by the 750–1500 rpm rotation speeds for given 100 mm/min, while the changing of welding speed from 100–300 mm/min for given 1500 rpm obviously increased the tensile strength of the joint and the maximum value for welding parameter 1500 rpm and 300 mm/min reached 77.3% of the base metal strength. The tensile fracture sites always locate in HAZ either on the advancing side or retreating side of the joints.  相似文献   

9.
Experimental investigations on butt welding of magnesium alloy to steel by hybrid laser–tungsten inert gas (TIG) welding with Cu–Zn alloy interlayer are carried out. The results show that the gradient thermal distribution of hybrid laser–TIG welding, controlled by offset adjustment, has a noticeable effect on mechanical properties and microstructure of the joints. Particularly, at the offset of 0.2 mm, defect-free joints are obtained, and the tensile strength could attain a maximum value of 203 MPa. Moreover, the fracture of the joint with the 0.2 mm offset happens in the weld seam of Mg alloy instead of the Mg/Fe interface. Owning to the addition of the Cu–Zn alloy interlayer, a metallurgical bonding between Mg alloy and steel is achieved based on the formation of intermetallic compounds of CuMgZn and solid solutions of Cu and Al in Fe. Meanwhile, the same element distribution tendency of Fe and Al indicates the intimate interaction between Fe and Al in current experimental conditions.  相似文献   

10.
Friction stir welding of steel presents an array of advantages across many industrial sectors compared to conventional fusion welding techniques. However, the fundamental knowledge of the friction stir welding process in relation to steel remains relatively limited. A microstructure and property evaluation of friction stir welded low alloy steel grade DH36 plate, commonly used in ship and marine applications has been undertaken. In this comprehensive study, plates of 2000 × 200 × 6 mm were butt welded together at varying rotational and traverse speeds. Samples were examined microscopically and by transverse tensile tests. In addition, the work was complemented by Charpy impact testing and micro-hardness testing in various regions of the weld. The study examined a wide range of process parameters; from this, a preliminary process parameter envelope has been developed and initial process parameter sets established that produce commercially attractive excellent quality welds through a substantial increase in the conventionally recognised weld traverse speed.  相似文献   

11.
Friction stir butt welding of titanium alloy Ti6Al4V and aluminum alloy A6061-T6 with 2 mm thickness was conducted by offsetting probe edge into the titanium alloy at rotation speed of 750 rpm and 1000 rpm and welding speed of 120 mm/min. The effect of probe offset distance on the interfacial microstructure and mechanical properties of the butt joint was investigated. When the probe offset distance is not sufficient, the two alloys cannot be completely joined together, i.e. there exists no bonding or kissing bonding at the root part of joint interface. However, when the probe offset distance is too large, a great amount of intermetallic compounds are formed at the joint interface and its adjacency, leading to fracturing roughly along the joint interface during a tensile test. In a proper range of probe offset distance, sound dissimilar butt joints are produced, which have comparatively high tensile strength and fracture in heat affected zone of the aluminum alloy during a tensile test.  相似文献   

12.
A needle-like probe is the simplest tool to manipulate fine spheres. It catches fine spheres by adhesion forces without any holding device. Metallic spheres of 10–100 μm are difficult to manipulate with the needle-like probe, because the gravity rivals the adhesion forces in the dynamics of the spheres. Large and heavy spheres arranged on a substrate are easily disturbed because of the same reason. Here, a manipulator equipped with a direct power source, which applies voltage to the probe, is fabricated. Large and heavy spheres are adhered by the controllable electrostatic force. Besides the manipulation, the apparatus is designed to weld the spheres by using the probe as electrode for spot/arc welding. Experiments on the manipulation showed that the probe caught gold spheres of 40–80 μm by applying 20–50 V and released by putting them down after cutting the power off. Following to manipulation, welding experiments were carried out at various conditions. Two power sources, a high-voltage and low-current power source and a low-voltage and high-current power source, and two welding methods, arc welding and spot welding, are examined. The experiments showed that the gold spheres of 40–80 μm can be welded by the spot welding using the high-voltage and low-current power source, of which maximum power rating is 10 kV×1 mA. The probe is kept to touch the sphere and 4 kV or more is applied. Electric sparks are generated at the interface of the probe and the substrate, and the sphere is welded to the substrate. In both the manipulation and welding, the contact pressure must be very low. A tower of gold spheres is fabricated as an example of three-dimensional microstructures composed of fine spheres.  相似文献   

13.
Dissimilar metals of AA6013 aluminum alloy and Q235 low-carbon steel of 2.5 mm thickness were butt joined using a 10 kW fiber laser welding system with ER4043 filler metal. The study indicates that it is feasible to join aluminum alloy to steel by butt joints when zinc layer was hot-dip galvanized at the steel’s groove face in advance, and better weld appearance can be obtained at appropriate welding parameters. The joints had dual characteristics of a welding joint on the aluminum side and a brazing joint on the steel side. The smooth Fe2Al5 layer adjacent to the steel matrix and the serrated-shape FeAl3 layer close to the weld metal were formed at the brazing interface. The overall thickness of Fe–Al intermetallic compounds layers produced in this experiment were varied from 1.8 μm to 6.2 μm at various welding parameters with laser power of 2.85–3.05 kW and wire feed speed of 5–7 m/min. The Al/steel butt joints were failed at the brazing interface during the tensile test and reached the maximum tensile strength of 120 MPa.  相似文献   

14.
Dissimilar welding of Ti–6Al–4V (Ti-6-4) to Ti–4.5A1–3V–2Fe–2Mo (SP-700) alloys was performed using a CO2 laser. The microstructure and notched tensile strength (NTS) of the dissimilar welds were investigated in the as-welded and post-weld heat treatment (PWHT) conditions. Moreover, the results were compared with homogeneous laser welds with the same PWHT. The dilution of SP-700 with the Ti-6-4 alloy caused the formation of fine needle-like α + β structures, resulting in the exhibition of a moderately high fusion zone (FZ) hardness of HV 398. The high FZ hardness (HV 438) for the weld with the PWHT at 482 °C was associated with low NTS or high notch brittleness. The fracture appearance of the notched tensile specimen was related to its inherent microstructure. With increasing the PWHT temperature, the thickness of grain boundary α increased, which promoted an intergranular dimple fracture. By contrast, fine shallow dimples were present in the peak-aged weld, which was induced by the refined α + β microstructures in the basket-weave form.  相似文献   

15.
This paper describes the failure analysis of the “tray section” made up of aluminum alloy 5052 which is used as a specimen holder in a research reactor. Fracture was observed in the central rod of alloy 5052 before it was taken for service. The fracture had occurred in a brittle mode without any gross plastic deformation at a location where the rod was welded to the stopper plate. Detailed microstructural examination was done using both optical and scanning electron microscopy. The weld fusion zone showed presence of high porosity and eutectic phases mainly along the inter-dendritic regions. These low melting temperature eutectics were rich in Si and Fe and led to weld cracking along the dendritic grains during solidification of the welds. Solidification cracking of alloy 5052 was related to pure aluminum filler wire used for welding that shifted the composition of the welds towards peak cracking sensitivity of 1.5 wt% Mg. The failure of the tray section was concluded to be due to welding defects, e.g. high porosity and solidification cracks. Recommendations to avoid this type of failure are also proposed.  相似文献   

16.
Fatigue fracture behavior of the 30 mm thick Q460C-Z steel cruciform welded joint with groove was investigated. The fatigue test results indicated that fatigue strength of 30 mm thick Q460C-Z steel cruciform welded joint with groove can reach fatigue level of 80 MPa (FAT80). Fatigue crack source of the failure specimen initiated from weld toe. Meanwhile, the microcrack was also found in the fusion zones of the fatigue failure specimen, which was caused by weld quality and weld metal integrity resulting from the multi-pass welds. Two-dimensional map of the longitudinal residual stress of 30 mm thick Q460C-Z steel cruciform welded joint with groove was obtained by using the contour method. The stress nephogram of Two-dimensional map indicated that longitudinal residual stress in the welding center is the largest.  相似文献   

17.
Friction Stir Welding (FSW) is a solid-state process in joining thermoplastic materials. Polymers are engineering materials used for future technological development as the polymer processing and fabrication techniques have developed novel plastic products and components in major industries. Particularly Nylon 6 is one of the polymer materials with a lot of engineering applications and a study on the behavior of the joining properties of Nylon 6 by FSW is necessary at this stage. In this Paper, FSW process is applied to join a Nylon 6 plate of 10 mm thickness with specially designed left hand threaded tool pin profile. FSW of Nylon 6 was carried out with the tool rotational speed at 1000 rpm and welding feed at 10 mm/min. During FSW process, the effect of the joint formation by the rotation of the threaded pin profile in clockwise direction and counter clockwise direction was analyzed with a schematic diagram. The objective of this study is to find out the effect of the tool direction and to reduce the weld defects. It is found that the FSW joint fabricated with counter clockwise directed tool rotation produced defect free welds with better material properties.  相似文献   

18.
The aim of the present work is to optimise the welding parameters for friction stir spot welded non-heat-treatable AA3003-H12 aluminium alloy sheets using a Taguchi orthogonal array. The welding parameters, such as the tool rotational speed, tool plunge depth and dwell time, were determined according to the Taguchi orthogonal table L9 using a randomised approach. The optimum welding parameters for the peak tensile shear load of the joints were predicted, and the individual importance of each parameter on the tensile shear load of the friction stir spot weld was evaluated by examining the signal-to-noise ratio and analysis of variance (ANOVA) results. The optimum levels of the plunge depth, dwell time and tool rotational speed were found to be 4.8 mm, 2 s and 1500 rpm, respectively. The ANOVA results indicated that the tool plunge depth has the higher statistical effect with 69.26% on the tensile shear load, followed by the dwell time and rotational speed. The tensile shear load of the friction stir spot welding (FSSW) joints increased with increasing plunge depth. Additionally, examination of the weld cross-sections, microhardness tests and fracture characterisation of the selected friction spot welded joints were conducted to understand the better performance of the joints. All the fractures of the joints during tensile testing occurred at stir zone (SZ), where the bonded section was minimum. The tensile shear load and tensile deformation of the FSSW joints increased linearly with increasing the bonded size. The finer grain size in the SZ led to the higher hardness, which resulted in higher fracture strength. When the tensile shear load of the joints increased approximately 3-fold, the failure energy absorption of the joints increased approximately 15-fold.  相似文献   

19.
In the present study, the joining of interstitial free steel and commercial pure aluminium was carried out by friction stir welding (FSW) technique using tool rotational speeds of 600, 900, 1200 rpm and traverse speed of 100 mm/min. The microstructure and micro-hardness of the weld interface have been investigated. Optical microscopy was used to characterize the microstructures of different regions of friction stir welding joints. The scanning electron microscopy-back scattered electron (SEM-BSE) images show the existence of the different reaction layers in the welded zone. The Al3Fe intermetallic compound has been observed in the weld interface and their thickness increase with the increase in tool rotational speed. Tensile strength was also evaluated and maximum tensile strength of ∼123.2 MPa along with ∼4.5% elongation at fracture of the joint have been obtained when processed at 600 rpm tool rotational speed.  相似文献   

20.
Dissimilar welding of the Ti–6Al–4V (Ti-6-4) to Ti–6A1–6V–2Sn (Ti-6-6-2) alloys was performed by CO2 laser in this work. The effect of post-weld heat treatment (PWHT) on the notched tensile strength (NTS) of the dissimilar weld was evaluated. Moreover, the results were also compared with the homogeneous laser welds with the same PWHT. Similar to the Ti-6-4 welds, the NTS of the FZ for dissimilar welds was less sensitive to PWHT conditions; the NTS of the FZ for distinct dissimilar welds fell within the range of 1060–1180 MPa. The results indicated a minor rise in the Mo equivalent of the titanium alloy promoted the formation of fine α + β microstructures in the form of basket weave in the welds, which resulted in high hardness accompanied with low NTS of the welds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号