首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
This investigation was conducted to determine whether there are correlations between CVN, HRc and KIc test results at room temperature for AISI H11/H13 hot‐work tool steels that could be developed to a tool for materials engineers and the structural designers. The results showed that such correlations do exist for electro‐slag‐remelted (ESR) and conventional AISI H11 hot‐work tool steel. Static KIc values were correlated with the results of standard CVN impact tests and the obtained hardness values at room temperature. Furthermore, the results show that the correlation can also be used to calculate KIc values from standard CVN impact tests and the respective Rockwell‐C hardness for AISI H13 tool steel. In general, the results of this investigation show that the correlation between the values for KIc, CVN and HRc can be used to estimate the KIc values from the CVN test results and the Rockwell‐C hardness.  相似文献   

2.
The effects of heat treatment and of the presence of primary carbides on the fracture toughness,K Ic and the fatigue crack growth rates,da/dN, have been studied in M-2 and Matrix II high speed steels. The Matrix II steel, which is the matrix of M-42 high speed steel, contained many fewer primary carbides than M-2, but both steels were heat treated to produce similar hardness values at the secondary hardening peaks. The variation of yield stress with tempering temperature in both steels was similar, but the fracture toughness was slightly higher for M-2 than for Matrix II at the secondary hardening peaks. The presence of primary carbides did not have an important influence on the values ofK Ic of these hard steels. Fatigue crack growth rates as a function of alternating stress intensity, ΔK, showed typical sigmoidal behavior and followed the power law in the middle-growth rate region. The crack growth rates in the near threshold region were sensitive to the yield strength and the grain sizes of the steels, but insensitive to the sizes and distribution of undissolved carbides. The crack growth rates in the power law regime were shifted to lower values for the steels with higher fracture toughness. SEM observations of the fracture and fatigue crack surfaces suggest that fracture initiates by cleavage in the vicinity of a carbide, but propagates by more ductile modes through the matrix and around the carbides. The sizes and distribution of primary carbides may thus be important in the initiation of fracture, but the fracture toughness and the fatigue crack propagation rates appear to depend on the strength and ductility of the martensite-austenite matrix.  相似文献   

3.
The fatigue crack growth rates,da/dN, and the fracture toughness, KIc have been measured in two high-carbon martensitic stainless steels, 440C and BG42. Variations in the retained austenite contents were achieved by using combinations of austenitizing temperatures, refrigeration cycles, and tempering temperatures. In nonrefrigerated 440C tempered at 150 °C, about 10 vol pct retained austenite was transformed to martensite at the fracture surfaces duringK Ic testing, and this strain-induced transformation contributed significantly to the fracture toughness. The strain-induced transformation was progressively less as the tempering temperature was raised to 450 °C, and at the secondary hardening peak, 500 °C, strain-induced transformation was not observed. In nonrefrigerated 440C austenitized at 1065 °C,K Ic had a peak value of 30 MPa m1/2 on tempering at 150 °C and a minimum of 18 MPa m1/2 on tempering at 500 °C. Refrigerated 440C retained about 5 pct austenite, and did not exhibit strain-induced transformation at the fracture surfaces for any tempering temperature. TheK Ic values for corresponding tempering temperatures up to the secondary peak in refrigerated steels were consistently lower than in nonrefrigerated steels. All of the BG42 specimens were refrigerated and double or quadruple tempered in the secondary hardening region; theK Ic values were 16 to 18 MPa m1/2 at the secondary peak. Tempered martensite embrittlement (TME) was observed in both refrigerated and nonrefrigerated 440C, and it was shown that austenite transformation does not play a role in the TME mechanism in this steel. Fatigue crack propagation rates in 440C in the power law regime were the same for refrigerated and nonrefrigerated steels and were relatively insensitive to tempering temperatures up to 500 °C. Above the secondary peak, however, the fatigue crack growth rates exhibited consistently lower values, and this was a consequence of the tempering of the martensite and the lower hardness. Nonrefrigerated steels showed slightly higher threshold values, ΔKth, and this was ascribed to the development of compressive residual stresses and increased surface roughening in steels which exhibit a strain-induced martensitic transformation.  相似文献   

4.
The effects of various thermal treatments,i.e., oil quench and different tempering conditions, on quasi-static and impact fracture toughness, stress-strain characteristics, hardness, and Charpy energy of 5140 H steel were examined. During quasi-static and impact loading notched round tensile specimens were used with a prefatigued crack. A specially designed device together with a pendulum hammer and electronic measuring system was used enabling testing of the opening mode fracture toughness at loading rates up to K1 = 3 x 106 MPa√m per second. It has been found that within the region of the lower tempering temperatures, 500 K≤ 650 K, the critical stress intensity factor KIc determined from impact testing is lower than that obtained during slow loading, whereas at the higher tempering temperatures, 650 K ≤T* ≤ 900 K, dynamic KIu values show a tendency to be higher than their quasi-static counterparts. This behavior was analyzed quantitatively using the Hahn-Rosenfield model which relates tensile properties to fracture toughness. A good agreement was found between quasi-static experimental results and the model. The relation between Charpy energy Kv and the critical stress intensity factor KIc was also evaluated. Changes of the fracture toughness are discussed within the framework of SEM fractographs taken after quasi-static and impact tests. On leave of absence from Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland.  相似文献   

5.
The aim of these investigations was first of all to evaluate the fracture toughness (Klc) changes of the hot-work tool steels depending on the non-metallic inclusions (NMI) volume fraction (melting technology). The tests were carried out on two types of the hot-work tool steels, i. e. H13 and H11 according to AISI. As a result of these investigations, supplemented by the detailed fractographic analysis, it has been revealed that uniform arrangement of NMI in the structure can be considered as harmless for the fracture toughness of tool steels. At high steel hardness values, the NMI, because of their action with a very small plastic strain zone, can be treated as natural obstacles in the crack propagation. At low hardness values of tool steels, achieved as a result of tempering at high temperatures, the role of NMI in the process of crack formation of these steels is limited by carbides precipitated from martensite. The micro-voids are formed round these carbides, which, connecting earlier than the voids formed round NMI, set the path of cracking and determine the steel fracture toughness.  相似文献   

6.
The toughness of SAE 4340 steel with low (0.003 wt pct) and high (0.03 wt pct) phosphorus has been evaluated by Charpy V notch (CVN) impact and compact tension plane strain fracture toughness (K 1c) tests of specimens quenched and tempered up to 673 K (400°C). Both the high and low P steel showed the characteristic tempered martensite embrittlement (TME) plateau or trough in room temperature CVN impact toughness after tempering at temperatures between 473 K (200°C) and 673 K (400°C). The CVN energy absorbed by low P specimens after tempering at any temperature was always about 10 J higher than that of the high P specimens given the same heat treatment. Interlath carbide initiated cleavage across the martensite laths was identified as the mechanism of TME in the low P 4340 steel, while intergranular fracture, apparently due to a combination of P segregation and carbide formation at prior austenite grain boundaries, was associated with TME in the high P steel.K IC values reflected TME in the high P steels but did not show TME in the low P steel, a result explained by the formation of a narrow zone of ductile fracture adjacent to the fatigue precrack during fracture toughness testing. The ductile fracture zone was attributed to the low rate of work hardening characteristic of martensitic steels tempered above 473 K (200°C).  相似文献   

7.
This research studied the effects of heat treatment and testing temperature on fracture mechanics behavior of Si-modified CA-15 martensitic stainless steel (MSS), which is similar to AISI 403 grade stainless steel, which has been widely used in wall and blanket structures and in the pipe of nuclear power plant reactors, turbine blades, and nozzles. The results indicated that fracture toughness of low-Si CA-15 MSS is better than that of AISI 403. The specimens of the low-Si CA-15 MSS after austenitization at 1010 °C and then tempering at 300 °C have higher plane-strain fracture toughness (K IC ) values for both 25 °C and −150 °C testing temperatures. However, the specimens tested at 150 °C cannot satisfy the plane-strain fracture toughness criteria. The fatigue crack growth rate is the slowest after austenitization at 1010 °C for 2 hours and tempering at 400 °C. Observing the crack propagation paths using a metallographic test, it was found that the cracking paths preferred orientation and branched along ferrite phase, owing to martensite-phase strengthening and grain-boundary-carbide retarding after 300 °C to 400 °C tempering. Also, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray diffraction analysis were performed to correlate the properties attained to the microstructural observation.  相似文献   

8.
The relationships between microstructure and fatigue crack propagation behavior were studied in a 5Mo-0.3C steel. Microstructural differences were achieved by varying the tempering treatment. The amounts, distribution, and types of carbides present were influenced by the tempering temperature. Optical metallography and transmission electron microscopy were used to characterize the microstructures. Fatigue fracture surfaces were studied by scanning electron microscopy. For each heat treatment the fatigue crack growth properties were measured under plane strain conditions using a compact tension fracture toughness specimen. The properties were reported using the empirical relation of Paris [da/dN = CoΔKm]. It was found that secondary hardening did influence the fatigue crack growth rates. In particular, intergranular modes of fracture during fatigue led to exaggerated fatigue crack growth rates for the tempering treatment producing peak hardness. Limited testing in a dry argon atmosphere showed that the sensitivity of fatigue crack growth rates to environment changed with heat treatment.  相似文献   

9.
It has been reported for as-quenched AISI 4340 steel that high temperature austenitizing treatments at 1200°C, instead of conventional heat-treatment at 870°C, result in a two-foldincrease in fracture toughness,K Ic, but adecrease in Charpy impact energy. This paper seeks to find an explanation for this discrepancy in Charpy and fracture toughness data in terms of the difference betweenK Ic and impact tests. It is shown that the observed behavior is independent of shear lip energy and strain rate effects, but can be rationalized in terms of the differing response of the structure produced by each austenitizing treatment to the influence of notch root radius on toughness. The microstructural factors which affect this behavior are discussed. Based on these and other observations, it is considered that the use of high temperature austenitizing be questioned as a practical heat-treatment procedure for ultrahigh strength, low alloy steels. Finally, it is suggested that evaluation of material toughness should not be based solely onK Ic or Charpy impact energy values alone; both sharp crack fracture toughness and rounded notch impact energy tests are required.  相似文献   

10.
It has been reported for as-quenched AISI 4340 steel that high temperature austenitizing treatments at 1200°C, instead of conventional heat-treatment at 870°C, result in a two-foldincrease in fracture toughness,K Ic, but adecrease in Charpy impact energy. This paper seeks to find an explanation for this discrepancy in Charpy and fracture toughness data in terms of the difference betweenK Ic and impact tests. It is shown that the observed behavior is independent of shear lip energy and strain rate effects, but can be rationalized in terms of the differing response of the structure produced by each austenitizing treatment to the influence of notch root radius on toughness. The microstructural factors which affect this behavior are discussed. Based on these and other observations, it is considered that the use of high temperature austenitizing be questioned as a practical heat-treatment procedure for ultrahigh strength, low alloy steels. Finally, it is suggested that evaluation of material toughness should not be based solely onK Ic or Charpy impact energy values alone; both sharp crack fracture toughness and rounded notch impact energy tests are required. formerly with Effects Technology, Inc., Santa Barbara, CA  相似文献   

11.
The plane strain fracture toughness values,K Ic , the fatigue crack growth rates and the tensile properties of M-50 and 18-4-1 high speed steels have been measured as a function of tempering temperature. The M-50 was a vacuum arc remelted grade (VIM-VAR) and the 18-4-1 an electroslag grade, and both are used in mainshaft gas turbine bearings. At the usual hardness for bearings, Rockwell C 62, 18-4-1 exhibited a slightly higher fracture toughness (21 MPa·m1/2) than M-50 (18 MPa·m1/2). The fatigue crack growth rates were very similar, and in the slow growth region followed the usual power law,dC/dN=(ΔK) m withm=3 to 4. The crack propagation rates were still significant at values as low as ΔK=5 MPa·m1/2. SEM studies of the fracture surfaces showed complex transgranular fracture paths for both steels. The tensile strengths and the elongations of M-50 were somewhat higher than the corresponding values for 18-4-1 but the yield strengths of the two steels were similar. The microstructures of these steels were markedly different, with M-50 exhibiting 2.6 vol pct undissolved carbides and the 18-4-1 showing 15.2 vol pct carbides, but the fatigue and fracture behaviors were similar.  相似文献   

12.
Machine components normally experience fatigue cycling during operation. Failure of these components is mostly due to fatigue. So, it is important to know the fatigue damage behavior and fatigue life of the material before selecting these steels for making different machine components. The En-8-grade (equivalent to SAE/AISI 1040) steel is generally used as a machine component in the annealed or hardened-and-tempered condition. The fatigue life (fatigue/endurance limit) is also dependent upon the tensile properties of any material. By suitable heat treatment, one can manipulate the tensile properties of any steel. The present work reports the effect of fatigue damage in En-8-grade heattreated steel (annealed and hardened and tempered), under different cyclic loading conditions at room temperature (25 °C), on the impact and dynamic fracture-toughness properties. The results indicate higher fracture toughness and impact toughness in hardened-and-tempered steel than in annealed steel. Cyclic hardening and softening occurs in both the hardened-and-tempered as well as the annealed steel. With the increase of peak stress and number of fatigue cycles, the K ID and CVN values decrease in hardened-and-tempered steels. The results are discussed in terms of dislocations, slip bands, and their density, microstructure, and fracture morphology.  相似文献   

13.
The aim of this research was to determine the effect of vacuum-heat-treatment process parameters on the material properties and their correlations for low-Si-content AISI H11-type hot-work tool steel using a single Circumferentially Notched and fatigue Pre-cracked Tensile Bar (CNPTB) test specimen. The work was also focused on the potential of the proposed approach for designing advanced tempering diagrams and optimizing the vacuum heat treatment and design of forming tools. The results show that the CNPTB specimen allows a simultaneous determination and correlation of multiple properties for hot-work tool steels, with the compression and bending strength both increasing with hardness, and the strain-hardening exponent and bending strain increasing with the fracture toughness. On the other hand, the best machinability and surface quality of the hardened hot-work tool steel are obtained for hardness values between 46 and 50 HRC and a fracture toughness below 60 MPa√m.  相似文献   

14.
The crack initiation toughness (K c ) and crack arrest toughness (K a ) of AISI 4140 and AISI 4340 steel were measured over a range of yield strengths from 965 to 1240 MPa, and a range of test temperatures from -53 to +74°C. Emphasis was placed onK a testing since these values are thought to represent the minimum toughness of the steel as a function of loading rate. At the same yield strengths and test temperatures,K a for the AISI 4340 was about twice as high as it was for the AISI 4140. In addition, theK a values showed a more pronounced transition temperature than theK c values, when the data were plotted as a function of test temperature. The transition appeared to be associated with a change in fracture mechanism from cleavage to dimpled rupture as the test temperature was increased. The occurrence of a “pop-in” behavior at supertransition temperatures has not been found in lower strength steels, and its evaluation in these high strength steels was possible only because they are not especially tough at their supertransition temperatures. There is an upper toughness limit at which pop-in will not occur, and this was found for the AISI 4340 steel when it was tempered to its lowest yield strength (965 MPa). All the crack arrest data were identified as plane strain values, while only about one-half of the initiation values could be classified this way.  相似文献   

15.
The effects of Cu infiltration on the monotonic fracture resistance and fatigue crack growth behavior of a powder metallurgy (P/M) processed, porous plain carbon steel were examined after systematically changing the matrix strength via heat treatment. After austenitization and quenching, three tempering temperatures were chosen (177 °C, 428 °C, and 704 °C) to vary the strength level and steel microstructure. The reductions in strength which occurred after tempering at the highest temperature were accompanied by the coarsening of carbides in the tempered martensitic steel matrix, as confirmed by optical microscopy and by microhardness measurements of the steel. Each steel-Cu composite, containing approximately 10 vol pct infiltrated Cu, had superior fracture toughness and fatigue properties compared to the porous matrix material given the same heat treatment. Although the heat treatments given did not significantly change the fatigue behavior of the porous steel specimens, the fatigue curves (da/dN vs ΔK) and fracture properties were distinctly different for the steel-Cu composites given the same three heat treatments. The fracture toughness (K IC and J IC ), tearing modulus, and ΔK TH values for the composites were highest after tempering at 704 °C and lowest after tempering at 177 °C. In addition, the fracture morphology of both the fracture and fatigue specimens was affected by changes in strength level, toughness, and ΔK. These fractographic features in fatigue and overload are rationalized by comparing the size of the plastic zone to the microstructural scale in the composite. This article is based on a presentation made in the symposium “Fatigue and Creep of Composite Materials” presented at the TMS Fall Meeting in Indianapolis, Indiana, September 14–18, 1997, under the auspices of the TMS/ASM Composite Materials Committee.  相似文献   

16.
The effectiveness of MIG welding with Argo‐shield gas & ER70S‐6 electrode in joining LRS (Grade‐B) steel was investigated through structure–property correlation of the joint region. Microstructure, tensile and fatigue properties, and mode of fracture (SEM fractograph) were correlated. Fatigue behavior has been investigated in air and sea water with thin specimen at near‐endurance stress amplitude up to 105 cycles. The crack growth rate (da/dN) maintained a non‐linear relationship with logarithm of stress intensity factor range (logΔK) for the near‐threshold values of ΔK. Considerable hardness and microstructural variation was observed across the weldment. Weld with more pearlite content was found to possess higher hardness and strength than the parent steel. Though, both in weld and in parent steel, either in air or in sea water, fatigue crack propagated at very slow rate with significant intermittent crack arrest, weld provided much higher resistance to crack growth in air. However, sea water accelerated the crack growth in weld and brought it closer to that in the parent steel. The morphologically complex microstructure of weld suffered much faster crack propagation in sea water than in air. While fatigue fracture in parent steel (both in air and sea water) and weld in air was found to occur through dimple rupture via microvoid coalescence, weld in sea water exhibited a mixed mode of failure.  相似文献   

17.
In this study, the effect of double austenitization on microstructure and toughness of AISI M2 high speed steel was investigated. For double austenitization treatment, the specimens, which are hardened initially at 1220°C and quenched in air, were hardened for a second time in the temperature range 1150 – 1050°C. For comparison purposes, another set of specimens is austenitized singly in the temperature range 1150 – 1050°C. Tempering process was carried out between 500 – 640°C. A double austenitization causes a fine carbide precipitation in the matrix, having sizes in the range of 0.10 ± 0.05 μm and volume fractions of between 1 and 6%. It is shown that a double austenitization treatment causes a decrease in fracture toughness (KIc), when compared with single austenitized ones. The reason for the lower KIc values of double austenitized specimens are attributed to these fine carbide precipitates: It is suggested that they limit the plastic deformation capability of the matrix and yield lower fracture toughness values.  相似文献   

18.
The effect of microstructure on strength and fatigue properties has been investigated in two medium carbon alloy steels (BS 817M40 and BS 835M30) by developing dual-phase, ferritic-martensitic microstructures. Hardness-strength relationships and fatigue resistance at comparatively high strength levels were investigated by producing various microstructures. Conventional quenching and tempering, intercritical annealing and step quenching were used to vary the proportion, morphology and distribution of the ferrite and martensite phases. The results of the present study show that both hardness and strength increase with increasing proportion of martensite and/or hardness of the second phase. The relationship between hardness or strength and martensite percent is not in good agreement with a simple “law of mixtures” but is compatible with a more rapid strength increase at high martensite contents. The dual phase microstructures from the present study show superior near threshold ΔKTH values than normal tempered martensite. The results also show a high degree of correlation between Paris equation m values and fracture toughness KIC, showing that for high m values KIC is low and vice versa. The present experiments show that although crack initiation resistance in dual-phase steels is excellent crack propagation rates are higher than in quenched and tempered microstructures for a given ΔK.  相似文献   

19.
This research studied the ambient (25 ‡C) and intermediate (150 ‡C) temperatures plane strain fracture toughness(K Ic ) and crack growth rateda/dN vs stress-intensity variation (δK) behaviors of compacted graphite (CG) cast irons in an atmospheric environment. As-cast ferritic irons with different percentages of compacted graphite (vermicularity) were produced by using insufficient amounts of spheroidizer. Irons with pearlitic matrix were obtained by heat treating the as-cast structure. The results of fracture toughness testing indicated that (1) for the same matrix, CG irons with higher vermicularity yielded lowerK Ic values, but their values were still much higher than those of gray (flake graphite) cast iron; (2) for the same vermicularity, CG irons with pearlitic matrix exhibited higher fracture toughness values than those of ferritic matrix; (3) at intermediate temperature (150 ‡C), the influence of vermicularity and matrix on fracture toughness is the same as at ambient temperature, except that theK Ic values were all a bit lower (1 to 8 pet). From crack growth ratevs stress-intensity variation experiments, the Paris equationda/dN = C(δK) n was derived, where a smaller value of indicates better crack growth resistance of materials. Compacted graphite cast irons with pearlitic matrix and/or greater vermicularity rendered highern values and, thus, inferior crack growth resistance. At elevated temperature, then values were all lower, indicating that the crack growth resistance was improved. Formely a Graduate Student, Department of Materials Engineering, Tatung Institute of Technology.  相似文献   

20.
This study is concerned with a correlation between the microstructure and fracture behavior of two AISI 4340 steels which were vacuum induction melted and then deoxidized with aluminum and titanium additions. This allowed a comparison between microstructures that underwent large increases in grain size and those that did not. When the steels were tempered at 350°C,K Ic and Charpy impact energy plots showed troughs which indicated tempered martensite embrittlement (TME). The TME results of plane strain fracture toughness are interpreted using a simple ductile fracture initiation model based on large strain deformation fields ahead of cracks, suggesting thatK Icscales roughly with the square root of the spacing of cementite particles precipitated during the tempering treatment. The trough in Charpy impact energy is found to coincide well with the amount of intergranular fracture and the effect of segregation of phosphorus on the austenite grain boundaries. In addition, cementite particles are of primary importance in initiating the intergranular cracks and, consequently, reducing the Charpy energy. These findings suggest that TME in the two 4340 steels studied can be explained quantitatively using different fracture models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号