首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Materials Letters》2006,60(17-18):2194-2197
Optical microscopy and scanning electron microscopy (SEM) were used to examine the microstructure and fracture of AZ31 magnesium alloy joint welded by automatic gas tungsten-arc filler (GTAF) welding process with AZ61 wire. More endeavors have been put on investigating the effect of filler wire on microstructure and performance of welded joint. The result showed that the grain size in heat-affected zone (HAZ) of GTAF welded joint holds significant variety compared with that of GTA welded joint (without filler wire). The modification of microstructure in HAZ has changed the fracture location as well as the ultimate tensile strength (UTS) of joint in tensile test.  相似文献   

2.
AA2219 (Al–6%Cu) was butt welded in T87 temper (solution heat-treated, cold worked and precipitation hardened) and T6 temper (solution heat-treated and precipitation hardened) using electron beam welding (EBW). Variables studied were base metal temper condition and mode of EBW. Mechanical properties of the weld joint and fracture toughness at fusion zone (FZ) and heat-affected zone (HAZ) were evaluated and compared with those of the base metal. Results showed that EB welds have higher joint efficiency and fracture toughness than that of gas tungsten arc welding (GTAW). Fracture toughness of T6 base metal was found to be higher than its T87 counterpart. When welded, FZ and HAZ in T87 showed higher fracture toughness than that of T6; HAZ was the toughest. Pulsed current (PC) EB weld showed marginal reduction in toughness compared to constant current (CC) weld. Toughness variation is analyzed with the help of tensile test, Charpy impact test and scanning electron microscopy (SEM) and transmission electron microscopy (TEM).  相似文献   

3.
The present work aims at studying the role of butter layer (BL) in low-cycle fatigue (LCF) behavior of modified 9Cr steel and CrMoV steel dissimilar welded joint. The significant difference of the chemical composition of base metals (BMs) makes it a challenge to achieve sound welded joint. Therefore, buttering was considered to obtain a transition layer between the dissimilar steels. The LCF tests of two kinds of specimens without and with butter layer were performed applying strain-controlled cyclic load with different axial strain amplitudes. The test results indicated that the number of cycles at higher strain amplitudes of welded joint without butter layer was greatly higher than that of the joint with butter layer, while the fatigue lifetime to crack initiation (2Nf) became closer to each other at low and middle strain amplitudes. The failure was in the tempered heat affected zone (HAZ) at the CrMoV side for specimens without BL, while the fracture occurred at the tempered HAZ in the BL for specimens with BL. The microstructure details of BM, BL, HAZ and weld metals (WMs) were revealed by optical microscopy (OM). It was found that the tempered martensite was major microstructure for welded joint and much more carbides were observed in tempered HAZ than other parts due to the repeated tempering. Microhardness test indicated a softest zone existing tempered HAZ of BL and also there was a softer zone in tempered HAZ at the CrMoV side due to repeated tempering during welding and post weld heat treatment (PWHT). And scanning electron microscopy (SEM) was applied to observe the fractography. It was indicated that the fatigue crack initiation occurred from the specimen surface and all specimens were ductile–brittle mixed fractures. It is deemed that the softening behavior in BL caused by twice tempering correspondingly decreased the LCF lifetime at higher strain amplitudes. So suitable welding parameters and heat treatment processes became a key measure to ensure LCF property without losing other properties for welded joint with BL.  相似文献   

4.
The dynamic strain rate ahead of a crack tip formed during stress corrosion cracking (SCC) under a static load is assumed to arise from the crack propagation. The strain surrounding the crack tip would be redistributed as the crack grows, thereby having the effect of dynamic strain. Recently, several studies have shown cold work to cause accelerated crack growth rates during SCC, and the slip-dissolution mechanism has been widely applied to account for this via a supposedly increased crack-tip strain rate in cold worked material. While these interpretations consider cold work as a homogeneous effect, dislocations are generated inhomogeneously within the microstructure during cold work. The presence of grain boundaries results in dislocation pile-ups that cause local strain concentrations. The local strains generated from cold working α-brass by tensile elongation were characterized using electron backscatter diffraction (EBSD). The role of these local strains in SCC was studied by measuring the strain distributions from the same regions of the sample before cold work, after cold work, and after SCC. Though, the cracks did not always initiate or propagate along boundaries with pre-existing local strains from the applied cold work, the local strains surrounding the cracked boundaries had contributions from both the crack propagation and the prior cold work.  相似文献   

5.
Pitting was observed on a 6-in. (15 cm) flare piping made of stainless steel ASTM A312 Gr. Tp 316L, prior going into service in a petrochemical plant. The pits were in the heat-affected zone (HAZ) and fusion zone (FZ) boundary of the pipe seam welds. The FZ was also uniformly corroded. The SEM photomicrographs showed large inclusions in the welded area, while EDS analysis indicated that the inclusions were rich in Al, Si, and S. The Streicher test indicated no sensitization in the welded area. The Huey test confirmed that the corrosion rate of samples from welded area were higher that of samples from base metal in a boiling nitric acid test.The results indicated the presence of a high level of inclusions in the welded area. Pitting initiation in HAZ and FZ may be attributed to existence of large inclusions in the welded area. The general corrosion of the FZ can be attributed to the galvanic effect between inter-dendrite delta ferrite and the cored austenitic in the welded area which could be prevented by proper annealing after welding. It is plausible to claim that the general corrosion of these areas could trigger the pitting initiation as well.  相似文献   

6.
为综合研究X90管线钢的焊接性,选用国内某钢厂轧制的X90管线钢卷板,利用预精焊工艺制备试验钢管4根,采用金相分析、扫描电镜(SEM)断口分析、夏比V型缺口冲击试验、拉伸、弯曲、硬度等试验,研究了焊接接头各个区域的组织和性能.试验结果表明:内外焊缝区组织均为针状铁素体,热影响区(HAZ)粗晶区晶粒粗化严重,主要组织为粒状贝氏体和贝氏体铁素体,在原奥氏体晶界和贝氏体板条内部存在块状或条状的(马氏体-奥氏体)M-A组元;HAZ冲击功离散性较大,出现了单值较低(45 J)的试样,SEM断口分析呈现典型的解理断裂特征;焊接接头抗拉强度805~815 MPa,断裂位置均在HAZ;焊接接头反弯试样易在HAZ出现裂纹和脆断现象;HAZ硬度在220~250 HV之间,较母材下降30 HV左右.HAZ是X90预精焊钢管焊接接头的薄弱环节,为提高X90管线钢的焊接稳定性,应重点研究精焊内外热循环双热影响亚区的组织转变和脆化机理.  相似文献   

7.
Two gamma titanium aluminide sheet materials were investigated to characterize the fusion zone cracking and mechanical properties that occur for specimens subjected to gas tungsten arc welding (GTAW). The materials used in this study consisted of essentially the same composition; however, one was received in the primary annealed (PA) condition and the other in the designed fully lamellar (DFL) condition. For both materials, all of the specimens welded with a stationary torch (spot welds) cracked catastrophically immediately after welding. The PA specimens exhibited a different mechanism of fracture in the fusion zone compared with the DFL specimens. The fractures that occurred in the PA specimens followed an interdendritic path through regions that did not completely solidify prior to the occurrence of cracking, whereas for the DFL specimens the primary mechanism of fracture was cleavage. For the butt welded specimens, no cracking occurred. For both materials, specimens welded parallel to the rolling direction exhibited more distinct preferred growth of columnar grains than those welded perpendicular to the rolling direction. The weld structure/property relationship is also discussed.  相似文献   

8.
研究了焊接过程中热循环、焊后腐蚀和自然时效对2024铝合金搅拌摩擦焊(FSW)接头力学性能的影响。结果表明,同一焊缝不同位置的力学性能存在一定的差异,靠近插入点位置的屈服强度和抗拉强度明显低于其他位置,之后不断升高,趋于稳定,屈服强度和抗拉强度的最大值分别约为310 MPa和415 MPa;随着自然时效时间的增加,接头屈服强度和抗拉强度在前2个月增长较快,增长率最大分别为2%和1.5%,之后趋于稳定,而伸长率的增长率先较快,增长率最大为6%,之后变缓;在不同的自然时效时间下,腐蚀均明显降低2024铝合金FSW接头的屈服强度、抗拉强度和伸长率,减小率的最大值分别为6.5%,6.1%和19.8%;随着自然时效时间的增加,腐蚀后接头的力学性能下降更严重。  相似文献   

9.
The purpose of this study is to evaluate changes in the mechanical, micro structural and the corrosion properties of stainless steel 316L under repeated repair welding. The welding and the repair welding were conducted by shielded metal arc welding (SMAW). The SMAW welding process was performed using E316L filler metals. Specimen of the base metal and different conditions of shielded metal arc welding repairs were studied by looking in the micro structural changes, the chemical composition of the phases, the grain size (in the heat affected zone) and the effect on the mechanical and corrosion properties. The microstructure was investigated using optical microscopy (OM) and scanning electron microscopy (SEM). The chemical composition of the phases was determined using energy dispersive spectrometry (EDS). The corrosion behavior in 1 M H2SO4 + 3.5% NaCl solution was evaluated using a potentiodynamic polarization method. Tensile tests, Charpy-V impact resistance and Brinell hardness tests were conducted. Hardness of the heat affected zone decreased as the number of repairs increased. Generally an increase in the yield strength (YS) and the ultimate tensile strength (UTS) occurred with welding. After the first repair, a gradual decrease in YS and UTS occurred but the values of YS and UTS were not less than values of the base metal. Significant reduction in Charpy-V impact resistance with the number of weld repairs were observed when the notch location was in the HAZ. The HAZ of welding repair specimen is more sensitive to pitting corrosion. The sensitivity of HAZ to pitting corrosion was increased by increasing the number of welding repair.  相似文献   

10.
Fatigue crack growth behaviours in different welding zones of laser beam welded specimens were investigated using central crack tension specimens for 6156 aluminium alloy under constant amplitude loading at nominal applied stress ratio R = 0.5, 0.06, ?1. The experimental results showed that base metal (BM) exhibited superior fatigue crack resistance compared to weld metal (WM) and heat‐affected zone (HAZ). Crack growth resistance of WM was the lowest. The exponent m values for BM and HAZ at different stress ratios are close and around 2.6, while m for WM at different stress ratio is around 4.7. The discrepancy between crack growth rates for WM and BM is more evident with increasing stress ratio, while it is a little change for HAZ and BM. Change of the microstructure in WM deteriorates the resistance of fatigue crack growth compared to BM. It was mainly due to grain boundary liquation and dissolving of second‐phase particles in the weld region. It was also found that the variety of fatigue crack resistance for different welding zones is in conformity with the change of hardness. BM with the highest hardness exhibited the maximum resistance for fatigue crack, and WM with the lowest hardness exhibited the minimum fatigue crack resistance.  相似文献   

11.
建立了铝合金焊接接头的S-N曲线,对比分析了搅拌摩擦和氩弧焊两种工艺对其焊接接头疲劳性能的影响,结果表明:在载荷相同的条件下,铝合金搅拌磨擦焊接接头的疲劳性能优于氩弧焊接头,搅拌摩擦焊接头的疲劳寿命N=106次的疲劳强度为59-65 MPa,搅拌摩擦焊接接头具有比氩弧焊接头更为细小的晶粒和狭窄的焊接热影响区,阻碍了滑移带的形成和裂纹的扩展,从而提高了接头的疲劳性能,铝合金焊接接头的缺陷是主要的疲劳裂纹源.  相似文献   

12.
Submerged friction stir welding (FSW) in cold and hot water, as well as in air, was carried out for 7050 aluminum alloys. The weld thermal cycles and transverse distributions of the microhardness of the weld joints were measured, and their tensile properties were tested. The fracture surfaces of the tensile specimens were observed, and the microstructures at the fracture region were investigated. The results show that the peak temperature during welding in air was up to 380 °C, while the peak temperatures during welding in cold and hot water were about 220 and 300 °C, respectively. The temperature at the retreated side of the joint was higher than that at the advanced side for all weld joints. The distributions of microhardness exhibited a typical “W” shape. The width of the low hardness zone varied with the weld ambient conditions. The minimum hardness zone was located at the heat affected zone (HAZ) of the weld joints. Better tensile properties were achieved for joint welded in hot water, and the strength ratio of the weld joint to the base metal was up to 92%. The tensile fracture position was located at the low hardness zone of the weld joints. The fracture surfaces exhibited a mixture of dimples and quasi-cleavage planes for the joints welded in cold and hot water, and only dimples for the joint welded in air.  相似文献   

13.
HAZ microstructure simulation in welding of a ultra fine grain steel   总被引:8,自引:0,他引:8  
In the present work the evolution of grain structure in the weld HAZ (heat affected zone) under welding thermal cycle was simulated. Especially the grain growth in the HAZ of a SS400 ultra fine grain steel was investigated. An integrated 3-D Monte Carlo (MC) simulation system for grain growth of the weld HAZ was developed based on Microsoft Windows. The results indicate that MC simulation is an effective way to investigate the grain growth in weld HAZ. The method not only simulates the non-isothermal dynamics process of the grain growth in the weld HAZ, but also visualizes the austenite grains realistically. Moreover, the thermal pinning effect can be easily included in the simulation process. The grain sizes of the CGHAZ (coarse grain heat affected zone) obtained from MC simulation are basically in agreement with the experimental measurement of the real welded joints under different heat input. Furthermore, the simulation indicates that the grain growth degree is higher for the SS400 ultra fine grain steel compared to conventional steel. With the increase in the heat input, the grain growth of the CGHAZ rapidly increases. Because the activation energy of the grain growth is lower for the SS400 ultra fine grain steel, austenite grains can grow at a relatively lower temperature, hence the range of the CGHAZ becomes wider.  相似文献   

14.
This paper presents the failure analysis of AISI-304 stainless steel tank that was fabricated by welding and used for the storage of styrene monomers. After about 13 years of satisfactory operation, significant cracking was observed adjacent to the weld joints and in base plate near tank foundation. Weld repair was by shielded gas arc welding using AISI 308 stainless steel filler wire. The failed base plate was replaced with the new AISI 304 base plate of same thickness. After a short period of time, seepage was observed along the weld bead. Upon nondestructive testing cracks were found in the heat-affected zone and in the base plate. The failure investigation was carried out on welded and base plate samples using spectroscopy, optical and scanning electron microscopy, fractography, SEM–EDS analysis, microhardness measurements, tensile and impact testing. The results revealed transgranular cracks in the HAZ and base plate, and the failure was attributed due to stress corrosion cracking. Cracks initiated as a result of combined action of stresses developed during welding and the presence of a chloride containing environment due to seawater. It was further observed that improper welding parameters were employed for weld repair which resulted in sensitization of the structure and postweld heat treatment to remove weld sensitization and minimize the residual stresses was not done.  相似文献   

15.
本文对WEL-TEN 62CF高强钢进行了碳当量和冷裂敏感系数分析计算、热影响区最高硬度试验、斜Y坡口焊接裂纹试验和十字接头焊接裂纹试验等一系列焊接试验。从冷裂倾向上分析62CF钢选用日铁L-62CF焊条,采用手工电弧焊时,焊接接头的冷裂敏感性,确定焊接时是否需要预热。通过冷裂敏感性试验,说明62CF高强钢即使在不预热的情况下,冷裂倾向都较小,但预热可降低焊接接头的硬度,有利于提高焊接接头的抗裂性能。  相似文献   

16.
In order to examine mechanical characteristics of the stainless steel (STS304L) hybrid welded butt joints, two-dimensional thermal elasto-plastic analysis has been carried out. To this end, a 2D simulation model has been developed considering hybrid welding features. Based on thermal history data obtained from this heat source model, the residual stress distribution in weld metal (WM), heat affected zone (HAZ) and base metal (BM) characteristics have been calculated and found to be in reasonable agreement with the experimentally measured values. In order to investigate the effect of welding process, thermal elasto-plastic behaviour of the hybrid welded joints was compared with a welded joints obtained by conventional submerged arc welding (SAW) process. The results show that the longitudinal residual stress in the hybrid welded joints is less (13–15%) than that of the SA welded joints. Weld metal formed in both welding processes shows very fine dendritic structure. Due to higher heat input in SAW, the HAZ size of the SA welded joints is more than twice that of the hybrid welded joints. Therefore, from mechanical and metallurgical point of view, it could be confirmed that it makes a good sense to use SAW instead of hybrid CO2 laser-gas metal arc welding (GMAW) for butt joint of the STS304L thick steel.  相似文献   

17.
为了促进先进高强钢激光焊接技术的发展,采用光纤激光器对1.5mm厚的TRIP590钢板进行焊接,对焊接接头的微观组织、硬度以及拉伸性能进行了研究,分析了焊接速度对组织、性能的影响。结果表明:焊缝组织主要为板条状马氏体,热影响区可分为完全淬火区和不完全淬火区。焊接接头硬度分布不均匀,在热影响区或焊缝处硬度最高。随着焊接速度提高,热影响区马氏体含量增多,贝氏体含量减少,热影响区和焊缝组织变得细小。焊接速度为3~5m/min时,拉伸试样均断裂在母材,断后延伸率均超过30%,随着焊接速度提高,断后延伸率也有所提高,强塑积(PSE)均在20000MPa%以上,拉伸变形过程中相变诱发效应显著,大部分残余奥氏体转变为马氏体,在提高材料塑性的同时也提高了强度,实现了高强度和高塑性的统一。  相似文献   

18.
振动焊接工艺效果研究   总被引:1,自引:0,他引:1  
通过振动焊接与传统焊接方法的对比试验来研究振动焊接技术对焊接残余应力、焊接变形、焊缝及其热影响区组织、工件焊缝质量、热影响区疲劳寿命等的影响,得出该技术可以降低焊接残余应力、细化焊缝及热影响区组织、防止焊接裂纹和工件畸变,改善焊缝综合质量的结论,并成功应用于HT-7U项目中304L圆形大底板构件的焊接中,取得明显效果。最后,指出了振动焊接技术在我国工业应用中尚存在的几个重大问题,为推广该项技术指明了发展方向。  相似文献   

19.
The heat affected zone (HAZ), has a great influence on the properties of welded joints since it can alter the microstructure and residual stresses. In this paper, the effect of welding parameters and heat input on the HAZ and grain growth has been investigated. The role of grain size on hardness and toughness of low carbon steel has also been studied.  相似文献   

20.
Abstract

The cause of thermal cracking about a socket welded tube was investigated by stress simulation and its comparison to hardness distribution of welding seam, HAZ and matrix of the tube. In the condition of heat-input in melting range of 1349°C, the stress was concentrated in HAZ at the opposite side of welding area by ANSYS program, which corresponded to the distribution of real hardness values of the tube. The high stress concentration in HAZ might be induced from fine carbide precipitation which formed during welding process. It could cause, therefore, tube cracking in operating condition simultaneously followed by bulging inside of the welded tube. In the crack propagation through all the tube originated from inside HAZ, it might be accelerated by thermal fatigue, and propagated along grain boundaries accompanied by the metal dust formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号