首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Melt pool dimension can help to relate process parameters and build part quality in selective laser melting (SLM) process. In this study, a near-infrared thermal imager (about 670?nm spectral range) was employed to collect powder layer thermal signal in SLM machine using nickel-based alloy as raw powder material. Radiant temperature distribution at different build heights has been acquired and melt pool sizes have been analysed. The major findings are as follows: (1) It is possible to estimate melt pool dimension based on the identified radiant liquidus temperature and appropriate thermal imager setting, but it is difficult to obtain true temperature. (2) At nominal process conditions of 600?mm/s beam speed and 180?W beam power for Inconel 718 powder, the melt pool has a length of about 0.36?mm and a width of about 0.21?mm. Build height seems to have little effect on melt pool dimensions.  相似文献   

2.
Re-melting process has been utilized to mitigate the residual stress level in the selective laser melting (SLM) process in recent years. However, the complex consolidation mechanism of powder and the different material behavior after the first laser melting hinder the direct implementation of the re-melting process. In this work, the effects of re-melting on the temperature and residual stress evolution in the SLM process are investigated using a thermo-mechanically coupled finite element model. The degree of consolidation is incorporated in the energy balance equation based on the thermodynamically-consistent phase-field approach. The drastic change of material properties due to the variation of temperature and material state is also considered. Using the proposed simulation framework, the single-track scanning is simulated first to predict the melt pool dimension and validate the proposed model with the existing experimental data. The obtained thermal histories reveal that the highest cooling rate is observed at the end of the local solidification time which acts as an important indicator for the alleviation of temperature gradient. Then, the scanning of a whole single layer that consists of multiple tracks is simulated to observe the stress evolution with several re-melting processes. After the full melting of powder material in the first scanning process, the increase of residual stress level is observed with one remelting cycle. Moreover, the predicted stress level with the re-melting process shows the variation trend attributable to the accumulated heat in the tracks. The numerical issues and the detailed implementation process are also introduced in this paper.  相似文献   

3.
对不同工艺参数下激光选区熔化(Selective Laser Melting, SLM)成形316L不锈钢微观组织结构进行表征,研究不同工艺参数下SLM成形316L不锈钢微观组织结构演化规律、单熔化道凝固特性。结果表明,SLM成形316L不锈钢具有跨尺度、非均质凝固组织特征,包括微米尺度柱状晶粒、小角晶界、熔池界面和纳米尺度亚结构。单熔化道的稳定成形是三维块体成形的基础,熔化道稳定性由激光工艺参数与金属粉体物理特性共同决定。不同的激光工艺参数显著影响SLM成形316L不锈钢微观组织结构,通过改变激光参数可实现微观组织结构的调控,在不同的激光逐层旋转角度下,SLM成形316L不锈钢晶粒尺寸随着扫描间距的增大而增大。强制定向热流使得外延生长机制主导凝固晶粒的生长,在不同的激光工艺参数下,沿增材方向的柱状晶粒形貌普遍存在。  相似文献   

4.
Simulation of temperature distribution and densification process of selective laser melting (SLM) WC/Cu composite powder system has been performed, using a finite volume method (FVM). The transition from powder to solid, the surface tension induced by temperature gradient, and the movement of laser beam power with a Gaussian energy distribution are taken into account in the physical model. The effect of the applied linear energy density (LED) on the temperature distribution, melt pool dimensions, behaviors of gaseous bubbles and resultant densification activity has been investigated. It shows that the temperature distribution is asymmetric with respect to the laser beam scanning area. The center of the melt pool does not locate at the center of the laser beam but slightly shifts towards the side of the decreasing X-axis. The dimensions of the melt pool are in sizes of hundreds of micrometers and increase with the applied LED. For an optimized LED of 17.5 kJ/m, an enhanced efficiency of gas removal from the melt pool is realized, and the maximum relative density of laser processed powder reaches 96%. As the applied LED surpasses 20 kJ/m, Marangoni flow tends to retain the entrapped gas bubbles. The flow pattern has a tendency to deposit the gas bubbles at the melt pool bottom or to agglomerate gas bubbles by the rotating flow in the melt pool, resulting in a higher porosity in laser processed powder. The relative density and corresponding pore size and morphology are experimentally acquired, which are in a good agreement with the results predicted by simulation.  相似文献   

5.
In blown powder laser cladding process, the powder travels across the laser path, gets heated up by absorbing laser energy, and finally melts on the substrate under the intense laser beam; as the substrate moves away this melt pool solidifies to form a continuous built-up layer. In the present study a two-dimensional conduction heat transfer equation has been solved using finite volume method to develop a theoretical process map for laser cladding. The developed process map indicates a range of scanning speed and powder feed rate for the feasibility of the process; the lower limit is dictated by the maximum melt pool temperature, and the higher limit by poor bonding due to lack of melting of the substrate (i.e. low dilution). Parametric regions for thick and thin cladding with low dilution can be decided from the process map. It is found that the process range expands with the increase in total absorbed power as well as power directly absorbed by the powder. Correlations for maximum melt pool temperature and dilution are presented. A process map for identifying the form and scale of the microstructure in the solidified layer is also presented.  相似文献   

6.
Selective laser melting (SLM) was used in fabricating the dense part from pre-alloyed Ti-6Al-4V powder. The microstructural evolution and inclusion formation of as-fabricated part were characterized in depth. The microstructure was characterized by features of columnar prior β grains and acicular martensite α'. High density defects such as dislocations and twins can be produced in SLM process. Investigations on the inclusions find out that hard alpha inclusion, amorphous CaO and microcrystalline Al2O3 are three main inclusions formed in SLM. The inclusions formed at some specific sites on melt pool surface. The microstructural evolution and inclusion formation of as-fabricated material are closely related to the SLM process.  相似文献   

7.
An overlapping composite track coating was produced on a steel surface by preplacing a 0·5 mm thick layer of TiC powder and then melting using a tungsten inert gas torch of constant energy input. The influence of the overlapping operation on preheating of the substrate, the dissolution of TiC particulates and the subsequent depth and hardness of the composite layer was analysed. The melt microstructure consisted of both undissolved and partially dissolved TiC particulates, together with a variety of morphologies and sizes of TiC particles precipitated during solidification. Preheating, resulting from the overlapping operation, occurred, producing additional melting of the TiC particulates and deeper melt depths but with a reduced volume fraction of TiC precipitates in the subsequent tracks. A maximum hardness of over 800 HV was developed in the composite layer. The high hardness was unevenly distributed in tracks melted at the initial and final stages, while it varied across the melt depths in other tracks.  相似文献   

8.
选区激光熔化技术(SLM)被认为是极有前途的增材制造技术之一,但不可逆的溅射行为严重限制了SLM技术的应用。从粉末熔池演变、加工工艺优化和飞溅颗粒动态特征监测等方面,总结了SLM过程中飞溅行为的研究现状,分析了飞溅行为的产生机制,探讨了激光–粉末–熔池相互作用下的熔池演变情况,表明金属蒸气、Marangoni效应和伯努利效应是诱发飞溅的主要因素;讨论了加工工艺与飞溅行为的相互关系,表明通过优化工艺参数和改善打印环境以抑制飞溅是行之有效的方法;阐述了飞溅诱导缺陷的机理,并讨论了SLM过程的监测方法,表明单一信号的局限性会导致监测结果失准,多信号融合监测是提升精准性的重要方法之一。最后,针对飞溅行为存在的关键科学问题和技术难题,展望了SLM加工中飞溅行为的研究方向。  相似文献   

9.
Laser metal deposition (LMD) induces a complex 3‐axis residual stress state, which superimposes the external service stresses and can cause unpredicted in‐service failures. To optimize the process it is important to know the mechanisms and the opportunities to influence the occurrence of residual stresses. From the mathematical point of view, laser metal deposition represents a free boundary value problem. The track geometry is part of the solution. Previously the authors developed a thermal model that is used to calculate the time‐ and space resolved temperature distribution and the track geometry. The thermal model encompasses the powder stream, its interaction with the laser radiation, the shadowing of the laser radiation by the particles, the heating of the particles and the melt pool computation. In this publication, the evolution of residual stresses for overlapping tracks for single and multilayer processing for different powder mass rates is described.  相似文献   

10.
A three-dimensional (3D) selective laser melting (SLM) model comprising coupled heat transfer and flow behavior is proposed. The free surface of the melt pool is calculated by the volume-of-fluid (VOF) method, which is a means of acquiring the surface morphology. In this research, laser powers and laser scanning speeds were normalized to characterize the influence on the surface morphology. Results showed that when the scanning speed was increased, the surface morphology initially became flatter, but then roughness developed again at high speed case. Further, as the laser power was increased, the surface morphology gradually roughened. To better describe the surface-morphology phenomenon according to different laser parameters, the melt pool volume and melt pool lifetime were also investigated. With these two factors constrained, a fine surface could be obtained with a low melt pool volume and proper lifetime (approximately 100 to 130 μs). The surface morphology and the width of the melt track were experimentally acquired, and are in a good agreement with the results predicted by simulation.  相似文献   

11.
A selective laser melting (SLM) system, which consisted of a fibre laser, a three-dimensional motion platform and a motion control system, was developed in this study. The effect of process parameters on the microstructure evolution of SLMed magnesium parts was investigated. The results revealed that under an irradiation of laser energy density <3.0?J/mm, the powder remained in the discrete state. At a laser energy density 3.0–6.0 J/mm, the powder partially melted and sintered together, yielding incompact tracks. As the energy density increased to 6.0–12.0 J/mm, the powder fully melted forming continuous and smooth tracks. With a further increase in the laser energy density evaporation of the powder occurred. Dense magnesium parts free of pores and cracks were successfully fabricated with the optimal energy density of 10.0 J/mm. The immersion experiment revealed that the degradation product was mainly consisted of Mg(OH)2, which slowed down the degradation rate acting as a protective layer.  相似文献   

12.
基于颗粒增强镍基复合材料优异的结构/功能特性,在航空航天、核电军工和电子电工等领域有着广泛的应用前景。本文选用机械球磨混粉+激光选区熔化方法 (SLM)制备了碳化钨(WC)颗粒增强IN718复合材料(WC/IN718),对复合材料内部异质界面连接机制、强化机制和断裂行为进行了分析。研究结果表明:随着WC颗粒含量的增加(0wt%~20wt%),试件成形良好,WC颗粒均匀分布在基体内部,异质界面处无缺陷产生,界面处产生了贫碳的W2C层和碳化物层,基体合金主要呈柱状晶生长。由于熔池内部能量密度分布不同,低温位置WC颗粒的断裂方式为先形成界面反应层后由热应力引起断裂,高温位置WC颗粒优先发生断裂,断裂成小尺寸颗粒,后与熔化的基体合金形成界面反应层,弥散分布在基体内部。随着WC颗粒含量的增加,复合材料的强度呈现升高的趋势,而断裂韧性降低,抗拉强度最高可达1 280 MPa,强化机制主要为载荷传递强化,断裂机制为WC颗粒的脆性断裂和基体合金的韧性断裂。  相似文献   

13.
In this study,the selective laser melting(SLM)technology has been employed to manufacture a nickelbased superalloy which was conventionally prepared through powder metallurgy(PM)route.The microstructural features and defects were systematically investigated both prior to and after heat treatment and compared with the PM counterpart.Both solidification cracking and liquation cracking were observed in the SLM specimen in which the grain misorientation and low melting point(γ+γ')eutectic played a vital role in their formation mechanism.Columnar grains oriented along building direction were ubiquitous,corresponding to strong<001>fiber texture.Solidification cell structures and melt pools are pervasive and noγ'precipitates were detected at about 10 nm scale before heat treatment.After supersolvus solution and two-step aging treatments,high volume fractionγ'precipitates emerged and their sizes and morphologies were comparable to those in PM alloy.<001>texture is relieved and columnar grains tend to become more equiaxed due to static recrystallization process and grain boundary migration events.Significant annealing twins formed in SLM alloy and are clarified as a consequence of recrystallization.Our results provide fundamental understandings for the SLM PM nickel-based superalloy both before and after heat treatment and demonstrate the potential to fabricate this group of alloys using SLM technology.  相似文献   

14.
Cladding is the process of depositing a superior built-up layer by fusion on a substrate. In blown powder laser cladding process, the powder travels across the laser path, gets heated up by absorbing laser energy, and finally melts on the substrate under the intense laser beam; as the substrate moves away this melt pool solidifies to form a continuous built-up layer. The laser energy is partly absorbed by the solid powder during its flight path (termed preheating) and partly by the top surface of the melt pool. In the present study a two-dimensional conduction heat transfer equation has been solved using finite-volume method to model the cladding process. It is observed that preheating allows higher scanning speed resulting in thin clad layer with low dilution. Preheating also permits high powder feed rate resulting in thick cladding with low dilution.  相似文献   

15.
Selective laser melting (SLM) additive manufacturing of pure tungsten encounters nearly all intractable difficulties of SLM metals fields due to its intrinsic properties. The key factors, including powder characteristics, layer thickness, and laser parameters of SLM high density tungsten are elucidated and discussed in detail. The main parameters were designed from theoretical calculations prior to the SLM process and experimentally optimized. Pure tungsten products with a density of 19.01 g/cm3 (98.50% theoretical density) were produced using SLM with the optimized processing parameters. A high density microstructure is formed without significant balling or macrocracks. The formation mechanisms for pores and the densification behaviors are systematically elucidated. Electron backscattered diffraction analysis confirms that the columnar grains stretch across several layers and parallel to the maximum temperature gradient, which can ensure good bonding between the layers. The mechanical properties of the SLM-produced tungsten are comparable to that produced by the conventional fabrication methods, with hardness values exceeding 460 HV0.05 and an ultimate compressive strength of about 1 GPa. This finding offers new potential applications of refractory metals in additive manufacturing.  相似文献   

16.
目的 研究真空感应熔炼气雾化法(VIGA)制备球形24CrNiMoY高强钢粉末并验证其激光3D打印性能。方法 阐明不同雾化气压对粉末形貌、流动性等粉体特征的影响,分析选区激光熔化技术快速成形合金钢样品的微观组织和力学性能。结果 在9.0 MPa雾化气压下制备的粉末球形度最佳,粉末松装密度达到4.89 g/cm3,流动性能为21.4 s/(50 g),粉末含氧量0.023%,空心球率<3%,粉末的微观组织主要是马氏体。经过激光工艺参数调控,SLM成形合金钢试样的激光熔池内存在两个明显不同的微区:激光熔化区(LMZ)和热影响区(HAZ)。LMZ主要是马氏体组织,HAZ主要为下贝氏体组织。合金钢试样的平均显微硬度为(402±5.7)HV0.2,其抗拉强度达到(1 246±12) MPa,断后伸长率为(11.6±0.5)%。结论 VIGA方法制备的 24CrNiMoY高强钢粉末满足SLM技术使用要求,具有良好的激光3D打印成形性。  相似文献   

17.
ABSTRACT

The grain growth mechanism of IN718 superalloy fabricated by selective laser melting (SLM) was studied. Epitaxial growth with the same crystallographic orientation or rotating by 90° across the melting pool boundary and competitive growth in the same melting pool were observed. Either of the two patterns of epitaxial growth can maintain the same grain across the melting pool boundary. Competitive growth is determined by both the heat flow direction and preferred crystallographic orientation. In SLM, the grains grow along the preferred crystallographic orientation owing to a high solidification rate. The smaller the deviation angles between the heat flow direction and the preferred crystallographic orientation, the faster the grain growth rate.  相似文献   

18.
Selective laser melting (SLM) is an additive manufacturing process that enables direct manufacturing of 3D complex shape parts and internal architecture from powder materials. The SLM technology is characterised by high temperature gradients and solidification rates that have a significant effect on the microstructures and properties of final parts. The present paper aims at understanding the influence of the initial properties of various martensitic stainless steel powders on the final microstructures and mechanical properties of parts manufactured using the same optimised SLM process parameter settings. The results obtained show that for applied optimum process parameters, the thermal effects are the same for all martensitic powders used. Besides, the final microstructures and properties are different. The results clearly show the effect of the initial complex chemical composition of the martensitic precipitation hardening powder on the microstructures of final parts, and consequently, on their properties.  相似文献   

19.
Selective laser melting (SLM) has great potential in additive manufacturing because it enables the production of full-density complex parts with the desired inner structure and surface morphology. High temperature gradients as a result of the locally concentrated energy input lead to residual stresses, crack formation and part deformation during processing or after separation from the supports and the substrate. In this study, an X-ray diffraction technique and numerical simulation were used for investigating the residual stress in SLM samples fabricated from stainless steel 316L and Ti6Al4V alloy. Conclusions regarding directions and values of stresses in SLM objects are given.  相似文献   

20.
Measurements are performed of the intensity of radiation in the visible and near IR spectra from 0.5 to 3.0 μm upon solidification in ambient air of a pool of melt of pure alumina in a powder bed of the same material. The results are given as the time and wavelength dependences of effective temperatures. It is demonstrated that the intensity of radiation upon crystallization is defined by the optical properties of melt and crystal, as well as by the melt thickness and temperature field in the melt which existed prior to the beginning of cooling. The presence of an almost horizontal region on the solidification plateau is due to the existence of an isothermal two-phase zone; however, with a melt thickness of several millimeters, such a region is observed only in the wavelength range from 0.5 to 0.9 μm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号