首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alignment of pristine carbon nanotubes (P-CNTs) and fluorinated carbon nanotubes (F-CNTs) in nylon-6 polymer composite fibers (PCFs) has been achieved using a single-screw extrusion method. CNTs have been used as filler reinforcements to enhance the mechanical and thermal properties of nylon-6 composite fibers. The composites were fabricated by dry mixing nylon-6 polymer powder with the CNTs as the first step, then followed by the melt extrusion process of fiber materials in a single-screw extruder. The extruded fibers were stretched to their maxima and stabilized using a godet set-up. Finally, fibers were wound on a Wayne filament winder machine and tested for their tensile and thermal properties. The tests have shown a remarkable change in mechanical and thermal properties of nylon-6 polymer fibers with the addition of 0.5?wt% F-CNTs and 1.0?wt% of P-CNTs. To draw a comparison between the improvements achieved, the same process has been repeated with neat nylon-6 polymer. As a result, tensile strength has been increased by 230% for PCFs made with 0.5% F-CNTs and 1% P-CNTs as additives. These fibers have been further characterized by DSC, Raman spectroscopy and SEM which confirm the alignment of CNTs and interfacial bonding to nylon-6 polymer matrix.  相似文献   

2.
By engineering the fiber/matrix interface, the properties of the composite can be changed significantly. In this work, we increased the effective surface area of the fiber/matrix interface, to facilitate additional stress transfer between fibers and matrix, by grafting carbon nanotubes on to carbon fibers (in the form of carbon fabric) by two different methods: (1) chemical vapor deposition (CVD) method and (2) a purely chemical method. With the CVD process, carbon nanotubes (CNT) were directly grown on carbon fiber substrate using chemical vapors. For the chemical method, CNT with carboxyl groups were grafted on functionalized carbon fiber via a chemical reaction. The morphology of CNT/carbon fibers was examined by scanning electron microscope (SEM) which revealed uniform coverage of carbon fibers with CNT in both of CVD method and chemical grafting method. CNT-grafted woven carbon fibers were used to make carbon/epoxy composites, and their mechanical properties were measured using three-point bending and tension tests which showed that those with CNT-grafted carbon fiber reinforcements using the CVD process has 11 % higher tensile strength compared to those containing carbon fibers modified with the chemical method. Also, composites with CNT-grafted carbon fibers with chemical method showed 20 % higher tensile strength compared to composites with unmodified carbon fibers. The results of tensile test revealed that both CVD and chemical grafting could significantly improve the mechanical properties of the carbon fiber composites.  相似文献   

3.
In this investigation, carnauba fibers obtained from the leaves of the carnauba palm tree were chemically modified and their potential for the development of a biodegradable composite was evaluated. Fiber treatments to improve interfacial bonding were carried out by alkali, peroxide, potassium permanganate and acetylation. Biodegradable composites were prepared using carnauba fibers and polyhydroxybutyrate (PHB) as matrix. Mechanical properties of the composites prepared with 10 wt.% of short carnauba fibers were investigated and related to fiber treatment. According to the results, the tensile strength of the composites made from peroxide treated fibers was superior to those using untreated fibers or any other fiber treatment. SEM observations on the fracture surface of the composites suggest improved fiber–matrix adhesion after peroxide treatment. This surface modification of the fibers was found to contribute to the enhancement of the mechanical properties of the composites, even though the tensile strength of the fibers was slightly reduced. Dynamic mechanical thermal analyses suggested improvement in storage modulus of the composites reinforced with carnauba fibers at higher temperatures as compared to the neat polymer.  相似文献   

4.
Carbon nanotubes (CNTs) are effective fillers/reinforcements regarding improving the properties of polymer. In the present paper, carboxylic acid functionalized CNTs were used to modify epoxy with intent to develop a nanocomposite matrix for hybrid multiscale composites combining benefits of nanoscale reinforcement with well-established fibrous composites. CNTs were dispersed in epoxy by using high energy sonication. At low contents of CNTs, hybrid multiscale composites specimens were manufactured via resin transfer molding (RTM) process. The processibility of CNTs/epoxy systems was explored with respect to their viscosity. The dispersion quality and re-agglomeration behavior of CNTs in epoxy were characterized using optical microscope. A CNTs loading of 0.025 wt% significantly improved the glass transition temperatures (Tg) of the hybrid multiscale composites. Scanning electron microscopy (SEM) was used to examine the fracture surface of the failed specimens. It is demonstrated that the addition of small amount of CNTs (0.025 wt%) to epoxy for the fabrication of multiscale carbon fabric composites via RTM route effectively improves the matrix-dominated properties of polymer based composites. Hybridization efficiency in carbon fiber reinforced composites using CNTs is found to be highly dependent on the changes in the dispersion state of CNTs in epoxy.  相似文献   

5.
Carbon nanotubes (CNTs) were grown from the surface of glass fibers by chemical vapor deposition, and these hybrid fibers were individually dispersed in an epoxy matrix to investigate the local composite structure and properties near the fiber surface. High-resolution transmission electron microscopy revealed the influence of infiltration and curing of a liquid epoxy precursor on the morphology of the CNT “forest” region, or region of high CNT density near the fiber surface. Subsequent image analysis highlighted the importance of spatially dependent volume fractions of CNTs in the matrix as a function of distance from the fiber surface, and nanoindentation was used to probe local mechanical properties in the CNT forest region, showing strong correlations between local stiffness and volume fraction. This work represents the first in situ measurements of local mechanical properties of the nano-structured matrix region in hybrid fiber-reinforced composites, providing a means of quantifying the reinforcement provided by the grafted nanofillers.  相似文献   

6.
In recent years, carbon nanotubes (CNTs) grown on fibers have attracted a lot of interest as an additional reinforcing component in conventional fiber-reinforced composites to improve the properties of the fiber/matrix interface. Due to harsh growth conditions, the CNT-grafted fibers often exhibit degraded tensile properties. In the current study we explore an alternative approach to deliver CNTs to the fiber surface by dispersing CNTs in the fiber sizing formulation. This route takes advantage of the developed techniques for CNT dispersion in resins and introduces no damage to the fibers. We focus on unidirectional glass fiber/epoxy macro-composites where CNTs are introduced in three ways: (1) in the fiber sizing, (2) in the matrix and (3) in the fiber sizing and matrix simultaneously. Interfacial shear strength (IFSS) is investigated using single-fiber push-out microindentation. The results of the test reveal an increase of IFSS in all three cases. The maximum gain (over 90%) is achieved in the composite where CNTs are introduced solely in the fiber sizing.  相似文献   

7.
Multi-phase composites have been studied by incorporating carbon nanotubes (CNTs) as a secondary reinforcement in an epoxy matrix which was then reinforced with glass fiber mat. Different types of CNTs e.g. amino functionalized carbon nanotubes (ACNT) and pristine carbon nanotubes (PCNT) were homogeneously dispersed in the epoxy matrix and two-ply laminates were fabricated using vacuum-assisted resin infusion molding technique. The issues related to CNT dispersion and interfacial bonding and its affect on the mechanical properties have been studied. An important finding of this study is that PCNT scores over ACNT in composites prepared under certain conditions. This is a very significant finding since PCNT is available at a much lower cost than ACNT.  相似文献   

8.
An effective carbon fiber/graphene oxide/carbon nanotubes (CF-GO-CNTs) multiscale reinforcement was prepared by co-grafting carbon nanotubes (CNTs) and graphene oxide (GO) onto the carbon fiber surface. The effects of surface modification on the properties of carbon fiber (CF) and the resulting composites was investigated systematically. The GO and CNTs were chemically grafted on the carbon fiber surface as a uniform coating, which could significantly increase the polar functional groups and surface energy of carbon fiber. In addition, the GO and CNTs co-grafted on the carbon fiber surface could improve interlaminar shear strength of the resulting composites by 48.12% and the interfacial shear strength of the resulting composites by 83.39%. The presence of GO and CNTs could significantly enhance both the area and wettability of fiber surface, leading to great increase in the mechanical properties of GO/CNTs/carbon fiber reinforced composites.  相似文献   

9.
采用电沉积法与化学气相渗透(CVI)法将碳纳米管(CNTs)分别引入到碳纤维表面和SiC基体中,制得了不同物相电沉积CNTs的C/SiC复合材料(CNTs-C)/SiC和C/(CNTs-SiC)。研究了CNTs沉积物相对C/SiC复合材料力学性能的影响,分析了不同CNTs沉积物相的C/SiC复合材料的拉伸强度及断裂机制。结果表明:相较于未加CNTs的C/SiC复合材料,CNTs沉积到碳纤维表面的(CNTs-C)/SiC复合材料的拉伸强度提高了67.3%,断裂功提高了107.2%;而将CNTs引入到SiC基体中的C/(CNTs-SiC)复合材料的断裂功有所降低,拉伸强度也仅提高了6.9%,CNTs没有表现出明显的增强增韧效果;C/(CNTs-SiC)复合材料与传统的C/SiC复合材料有相似的断裂形貌特征,断裂拔出机制类似,主要为纤维增强增韧,CNTs的作用不明显。  相似文献   

10.
The interface between reinforcing fiber and matrix is a crucial element in composite performance. Homogeneous and interconnected carbon nanotubes (CNTs) were deposited onto the surface of carbon fibers to produce multiscale reinforcement by electrophoretic deposition (EPD). Single fiber tensile tests showed that the tensile strength and Weibull modulus of the resulting multiscale materials were increased by 16 and 41%, respectively. Compared with as-received carbon fibers, CNTs-deposited carbon fibers provided the decreased surface energy by 20% and the increased adhesion work by 22% using modified Wilhelmy method. Results from single fiber pull-out testing showed that a significant improvement (up to 68.8%) of interfacial shear strength was obtained for the composites containing by CNTs/Carbon fiber multiscale reinforcement. All results strongly suggest that EPD process can provide a feasible platform for improving interface properties of advanced composites.  相似文献   

11.
It is an obstacle issue for carbon nanotubes (CNTs) particularly for single-wall carbon nanotubes (SWCNTs) with nano-level dispersion in fiber reinforced polymer matrix composites. In this paper, the dispersing agents such as Volan and BYK-9076 were employed to treat SWCNTs to improve their dispersion in the glass fiber/epoxy (GF/EP) composites. The dispersing results of SWCNTs in composites were observed by scanning electron microscopy (SEM). Then the glass transition temperature (Tg) of these kinds of composites with treated and untreated SWCNTs were obtained by dynamic mechanical thermal analysis (DMTA). Moreover, the flexural tests were performed on these composites. Based on the experiment results, the dispersion of SWCNTs was improved and the flexural property of SWCNTs/GF/EP composite was enhanced too.  相似文献   

12.
分别采用单壁碳纳米管(SWNTs)和多壁碳纳米管(MWNTs)这两种碳纳米管(CNTs)制备不同的CNTs/Lyocell复合纤维,探讨了碳纳米管类型对复合纤维的结构与性能的影响。结果表明,碳纳米管类型并未影响CNTs/Lyocell纤维的结晶结构,质量分数为1%的SWNTs或MWNTs在Lyocell基体中分布都比较...  相似文献   

13.
In this study carbon nanotubes (CNTs) were grown on carbon fibers to enhance the in-plane and out-of-plane properties of fiber reinforced polymer composites (FRPs). A relatively low temperature synthesis technique was utilized to directly grow CNTs over the carbon fibers. Several composites based on carbon fibers with different surface treatments (e.g. growing CNTs with different lengths and distribution patterns and coating the fibers with a thermal barrier coating (TBC) layer) were fabricated and characterized via on- and off-axis tensile tests. The on-axis tensile strength and ductility of the hybrid FRPs were improved by 11% and 35%, respectively, due to the presence of the TBC and the surface grown CNTs. This configuration also exhibited 16% improvement on the off-axis stiffness. Results suggest that certain CNT growth patterns and lengths are more pertinent than the other surface treatments to achieve superior mechanical properties.  相似文献   

14.
利用激光对玻璃纤维、玄武岩纤维和碳纤维进行表面改性后,以环氧树脂为基体,分别制备三种纤维增强环氧树脂复合材料。利用SEM和万能试验机对表面改性前后的碳纤维形态、力学性能及三种纤维/环氧树脂复合材料的力学性能和断面形貌进行表征,研究了纤维激光表面改性对三种纤维及其增强环氧树脂复合材料力学性能的影响。结果表明:激光表面改性对碳纤维/环氧树脂复合材料的力学性能提升最高,其拉伸强度最大提高了77.06%,冲击强度最大提高了31.25%,玄武岩纤维/环氧树脂复合材料的力学性能提升次之,而玻璃纤维/环氧树脂复合材料的力学性能有所下降。因此,激光进行表面改性适用于碳纤维和玄武岩纤维。  相似文献   

15.
Carbon nanotubes (CNTs) and carbon black (CB) filled powder styrene-butadiene rubber (SBR) composites were prepared by spray drying of the suspension of CNTs and CB in SBR latex. The powders were sphere like and fine with uniform diameters of 10-15 μm. Experimental results showed that the introduction of CNTs into the matrix was beneficial to improve the security of the vulcanization of the rubber composites, and the dynamic and basic mechanical properties of the CNTs/SBR composites were better than those of CB/SBR and neat SBR composites. Observations on the microstructure of the composites indicated that CNTs were well dispersed in the matrix. Morphology of the fracture confirmed that the bonding between CNTs and rubber matrix was strong and load can be transferred to CNTs efficiently during the mechanical property tests. Moreover, the powder SBR composites containing well-dispersed CNTs could be perfect candidate as additives for other polymers.  相似文献   

16.
以环己烷为碳源、二茂铁为催化剂前躯,采用浮游催化法成功的在碳纤维表面生长了碳纳米管(CNT),制备了多尺度杂化材料CNTs/CF。实验重点考察了反应温度、二茂铁浓度、载气等参数对CNT在纤维表面生长的影响,通过扫描电镜(SEM)、投射电镜(TEM)研究了CNTs/CF的形貌及产物CNT的微观结构。当固定反应温度为820℃、二茂铁-环己烷浓度为2g/100mL时,随着氢气在载气中含量在0~100%范围内变化,产物CNT直径亦有86nm降低至39nm。通过单丝拉伸测试发现,相比初始碳纤维,不同长度的CNTs/CF单纤维强度下降幅度均在10%以内。  相似文献   

17.
The versatile electrospinning technique was used to successfully align and disperse multiwalled carbon nanotubes (MWCNT) in nylon 6,6 matrix to obtain composite fibers. The morphology of the composite fibers and the dispersion of the CNTs within the fibers were analyzed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), respectively. TEM analysis revealed that the CNTs were well-dispersed, separated and aligned along the fiber axis. The thermal and mechanical properties of the composite fibers were characterized as a function of weight fraction of the CNTs. Incorporation of the CNTs in the fibers resulted in an increase in glass-transition temperature (Tg) by ∼7 °C, indicating that the addition of CNTs has restricted the mobility of the polymer chains and provided confinement to neighboring molecular chains. Tensile and nanoindentation experiments were performed to investigate the mechanical deformation behavior of the composite fibers. The results suggested that incorporation of high strength and high aspect ratio CNTs into the fiber matrix enhanced significantly the stiffness and strength of nylon 6,6 fibers. An understanding of the structure–property relationships can provide fruitful insights to develop electrospun fibers with superior properties for miniaturized and load-bearing applications.  相似文献   

18.
Carbon blacks (CB), derived from bamboo stem (BS-CB), coconut shells (CNS-CB) and oil palm empty fiber bunch (EFB-CB), were obtained by pyrolysis of fibers at 700 °C, characterized and used as filler in epoxy composites. The results obtained showed that the prepared carbon black possessed well-developed porosities and are predominantly made up of micropores. The BS-CB, CNS-CB and EFB-CB filled composites were prepared and characterized using scanning electron microscope (SEM) and thermogravimetric analyzer (TGA). The SEM showed that the fractured surface of the composite indicates its high resistance to fracture. The CBs–epoxy composites exhibited better flexural properties than the neat epoxy, which was attributed to better adhesion between the CBs and the epoxy resin. TGA showed that there was improvement in thermal stability of the carbon black filled composites compared to the neat epoxy resin.  相似文献   

19.
以丙烯腈-丁二烯-苯乙烯共聚物(ABS)及短玻璃纤维(SGF)为原料, 以苯乙烯-马来酸酐共聚物(SMA)和环氧树脂(EP)为界面相容剂, 制备了SGF/SMA-EP-ABS复合材料。用扫描电镜(SEM)、 动态力学热分析(DMTA)等研究了界面相容剂对SGF增强ABS复合材料力学性能及界面粘结性能的影响。结果表明:加入SMA或EP, SGF增强ABS复合材料的力学性能明显提高; SMA与EP同时加入具有明显的协同效果, 使复合材料的性能更为优越。当SGF加入质量分数为30%时, SGF/SMA-EP-ABS复合材料的拉伸强度、 弯曲强度、 冲击强度较未添加界面相容剂时分别提高了56%、 42%、 79%。SEM和DMTA测试表明, 加入SMA和环氧树脂后, SGF与ABS基体之间的界面粘结性能得到很大改善。   相似文献   

20.
The effects of carbon nanotubes (CNTs) on the mechanical and fracture properties of ramie fiber-reinforced epoxy composites were investigated. Three-point bending, short beam shear, single-edge-notch bending, and Charpy impact tests were employed to evaluate the properties of ramie fiber-reinforced composites without and with CNTs modification. The fracture mechanisms were revealed with the aid of the dynamic mechanical analysis, Fourier transform infrared, and X-ray photoelectron spectroscopy. It was found that the mechanical and fracture properties of ramie fiber-reinforced composites were enhanced by incorporating multiwalled carbon nanotubes, except the impact fracture toughness. The unique chemical compositions and the multiscaled nanosized microstructures of natural fibers brought into focus new mechanisms for the improvement of the mechanical properties of natural fiber-reinforced composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号