共查询到20条相似文献,搜索用时 15 毫秒
1.
提高医学图像的清晰度对于医生迅速的做出病情的诊断与分析具有重要的意义,为充分提高医学图像的纹理细节清晰度,提出一种基于残差网络的医学图像超分辨率重建算法。选取合适的数据集,使用非常深的卷积神经网络,多次级联较小的滤波器,充分提取图像中的信息;使用残差学习的方式以及Adam优化方法来加快深层网络模型的收敛;将不同放大倍数的训练集组合成混合数据集进行训练,提高性能的同时大大减少了参数数量与训练时间。实验结果表明,所提算法的PSNR、SSIM、FSIM均高于现有的几种算法,重建出的图像细节更加丰富,边缘更加完整。 相似文献
2.
传统的卷积神经网络用到的方法是在稀疏表示的超分辨率图像的基础上学习高/低分辨率图像之间端到端的映射,输入的是高分辨率的图像,输出的是低分辨率的图像,拥有三层卷积层的SRCNN虽然有一定的重建效果,但是感受野较低,因此,提出加深网络结构的方法,此次改进使得后面的网络层拥有更大的感受野,这样结果的像素点可以根据更多的像素点来推断。但是考虑到网络结构加深对传输速率的影响,通过引入局部残差学习和全局残差学习相结合的方法来提高学习率,通过该办法有效地加快了收敛速度,并且通过实验结果验证,与已有的Bicubic、SRCNN和VDSR相比,重建效果在峰值信噪比、结构相似性和视觉效果上均有所提升。 相似文献
3.
针对目前提高图像分辨率的卷积神经网络存在的特征提取尺度单一以及梯度消失等问题,提出了多尺度残差网络的单幅图像超分辨率重建方法.采用多尺度特征提取和特征信息融合,解决了对图像细节特征提取不够充分的问题;将局部残差学习和全局残差学习相结合,提高了卷积神经网络信息流传播的效率,减轻了梯度消失现象.在Set5、Set14和BS... 相似文献
4.
目的 近几年应用在单幅图像超分辨率重建上的深度学习算法都是使用单种尺度的卷积核提取低分辨率图像的特征信息,这样很容易造成细节信息的遗漏。另外,为了获得更好的图像超分辨率重建效果,网络模型也不断被加深,伴随而来的梯度消失问题会使得训练时间延长,难度加大。针对当前存在的超分辨率重建中的问题,本文结合GoogleNet思想、残差网络思想和密集型卷积网络思想,提出一种多尺度密集残差网络模型。方法 本文使用3种不同尺度卷积核对输入的低分辨率图像进行卷积处理,采集不同卷积核下的底层特征,这样可以较多地提取低分辨率图像中的细节信息,有利于图像恢复。再将采集的特征信息输入残差块中,每个残差块都包含了多个由卷积层和激活层构成的特征提取单元。另外,每个特征提取单元的输出都会通过短路径连接到下一个特征提取单元。短路径连接可以有效地缓解梯度消失现象,加强特征传播,促进特征再利用。接下来,融合3种卷积核提取的特征信息,经过降维处理后与3×3像素的卷积核提取的特征信息相加形成全局残差学习。最后经过重建层,得到清晰的高分辨率图像。整个训练过程中,一幅输入的低分辨率图像对应着一幅高分辨率图像标签,这种端到端的学习方法使得训练更加迅速。结果 本文使用两个客观评价标准PSNR(peak signal-to-noise ratio)和SSIM(structural similarity index)对实验的效果图进行测试,并与其他主流的方法进行对比。最终的结果显示,本文算法在Set5等多个测试数据集中的表现相比于插值法和SRCNN算法,在放大3倍时效果提升约3.4 dB和1.1 dB,在放大4倍时提升约3.5 dB和1.4 dB。结论 实验数据以及效果图证明本文算法能够较好地恢复低分辨率图像的边缘和纹理信息。 相似文献
5.
深层网络有效地提高了重建图像的精度,但是拥有大量参数,使训练时间过长。因此,改进了一种基于递归残差网络的遥感图像超分辨率重建算法,将全局残差学习和局部残差学习相结合,有效地降低训练深层网络的难度,并且通过递归学习控制网络参数。实验结果证明了递归残差网络在遥感图像超分辨率重建中的有效性,改进的网络可以获得更好的主观视觉效果以及客观评价指标。 相似文献
6.
谢雪晴 《计算机应用与软件》2019,36(10)
随着数码相机、手机等电子设备的普及,每天都会产生大量的图像,但通常这些图像的分辨率比较低。针对单幅图像超分辨率(Single Image Super-Resolution,SISR)方法性能较低的问题,提出一种基于残差密集网络的单幅图像超分辨率重建方法。将浅层的卷积特征输入到残差密集块,获得全局和局部的特征;对图像进行超分辨率重建,得到清晰的高分辨率图像。为了验证该方法的有效性,在四个公共的数据集Set5、Set14、B100和Urban10上进行了定性和定量的实验。实验结果表明,该方法能够更好地恢复出高分辨率的图像。 相似文献
7.
8.
近年来,随着科学技术的高速发展,深度学习的蓬勃兴起,实现图像超分辨率重建成为计算机视觉领域一大热门研究课题.然而网络深度增加容易引起训练困难,并且网络无法获取准确的高频信息,导致图像重建效果差.本文提出基于密集残差注意力网络的图像超分辨率算法来解决这些问题.该算法主要采用密集残差网络,在加快模型收敛速度的同时,减轻了梯度消失问题.注意力机制的加入,使网络高频有效信息较大的权重,减少模型计算成本.实验证明,基于密集残差注意力网络的图像超分辨率算法在模型收敛速度上极大地提升,图像细节恢复效果令人满意. 相似文献
9.
基于深度学习的单幅图像超分辨率网络模型体积庞大,导致参数利用率低且难以部署,对中间层特征利用不充分。提出一种密集反馈注意力网络(DFAN)模型。在同一特征图中通过多尺度残差注意力模块(MRAB)提取不同尺度的深层特征,以增加特征的多样性。同时将每个MRAB的输出均作为同组中其他残差模块的输入,使各层之间的信息流最大化,从而减小训练难度。实验结果表明,相比VDSR、DRRN、MemNet等模型,DFAN模型具有较优的重建效果,其在重建放大倍数为4的Set5数据集上计算复杂度仅为VDSR模型的0.14倍左右,而峰值信噪比提高了0.57 dB。 相似文献
10.
针对现有残差网络存在残差特征利用不充分、细节丢失的问题,提出一种结合两层残差聚合结构和感受野扩展双注意力机制的深度神经网络模型,用于单幅图像超分辨率(SISR)重建。该模型通过跳跃连接形成两层嵌套的残差聚合网络结构,对网络各层提取的大量残差信息进行分层聚集和融合,能减少包含图像细节的残差信息的丢失。同时,设计一种多尺度感受野扩展模块,能捕获更大范围、不同尺度的上下文相关信息,促进深层残差特征的有效提取;并引入空间-通道双注意力机制,增强残差网络的判别性学习能力,提高重建图像质量。在数据集Set5、Set14、BSD100和Urban100上进行重建实验,并从客观指标和主观视觉效果上将所提模型与主流模型进行比较。客观评价结果表明,所提模型在全部4个测试数据集上均优于对比模型,其中,相较于经典的超分辨率卷积神经网络(SRCNN)模型和性能次优的对比模型ISRN(Iterative Super-Resolution Network),在放大2倍、3倍、4倍时的平均峰值信噪比(PSNR)分别提升1.91、1.71、1.61 dB和0.06、0.04、0.04 dB;视觉效果对比显示,所提模型恢... 相似文献
11.
对于目前图像超分辨率重建算法中的问题,忽略重建图像结构性和重建过程中丢失高频信息,提出了一种基于多字典的单幅图像超分辨率重建算法。在字典学习阶段根据每个图像块的主方向角,对所有训练图像块进行聚类并训练各类的字典。利用训练得到的字典重建训练样本并计算各类的残差图像块,然后对残差图像块再进行聚类、训练残差字典。用锚定邻域回归方法重建高分辨率图像,实验结果表明,该算法在客观评价和视觉效果上均优于许多优秀的图像超分辨算法。 相似文献
12.
近年来,由于深度卷积神经网络的出色性能,深度学习已成为图像超分辨率领域的研究热点,已经有许多具有很深结构的大型模型被提出。而在实际应用中,普通个人计算机或智能终端的硬件显然不适合大规模深度神经网络模型。提出了一种针对单幅图像超分辨率且具有自动残差缩放功能的轻量级网络(ARSN),与许多基于深度学习的方法相比,它的层和参数更少。此外,该网络中有特殊的残差块和跳跃连接用来进行残差缩放以及全局和局部残差学习。根据测试数据集结果,该网络在重建质量和运行速度上都达到了非常优异的性能。所提出的网络在性能、速度和硬件消耗方面均取得了良好的效果,具有较高的实用价值。 相似文献
13.
图像超分辨率重构是计算机视觉领域中的一个经典问题,旨在通过算法将一幅或者多幅低分辨率图像转化为高分辨率图像.近年来,基于深度学习的单幅图像超分辨率重构算法得到了广泛的应用.针对多数网络存在的学习能力较弱、训练时间较长以及重建图像质量有待提升等问题,提出一种基于残差学习的图像超分辨率重构方法.网络通过级联深度卷积网络对图... 相似文献
14.
15.
单幅图像超分辨率(SISR)是指从一张低分辨率图像重建高分辨率图像.传统的神经网络方法通常在图像的空间域进行超分辨率重构,但这些方法常在重构过程中忽略重要的细节.鉴于小波变换能够将图像内容的"粗略"和"细节"特征进行分离,提出一种基于小波域的深度残差网络(DRWSR).不同于其他传统的卷积神经网络直接推导高分辨率图像(HR),该方法采用多阶段学习策略,首先推理出高分辨率图像对应的小波系数,然后重建超分辨率图像(SR).为了获取更多的信息,该方法采用一种残差嵌套残差的灵活可扩展的深度神经网络.此外,提出的神经网络模型采用结合图像空域与小波域的损失函数进行优化求解.所提出的方法在Set5、Set14、BSD100、Urban100等数据集上进行实验,实验结果表明,该方法的视觉效果和峰值信噪比(PSNR)均优于相关的图像超分辨率方法. 相似文献
17.
在遥感图像超分辨率重建领域,大部分数据集缺少成对的图像用于训练,当前的方法主要是通过双三次插值的方式来获取低分辨率图像,因退化模型过于理想化导致在处理真实低分辨率遥感图像时效果较差,基于此,文中提出了一种自然场景下真实遥感图像的超分辨率重建算法.针对缺少成对图像的数据集的问题,构建了一种更合理的退化模型,将成像过程中的... 相似文献
18.
随着卷积神经网络深度的不断增加,深度卷积神经网络的训练会变得更加困难.此外,在图像超分辨率中,低分辨率图像的通道特征和输入通常在不同的通道中被平等对待,这就导致了卷积神经网络的表征能力被弱化.为了解决这些问题,提出了一种多跳连接残差注意网络,该网络利用多跳连接中的残差(Residual in Multi-skip Connection,RIMC),构造了具有多个残差组的深度网络.每个残差组包含了一定数量的短跳连接和多跳连接.在RIMC的基础上,主网络被允许穿过多跳连接来绕过丰富的低频信息,同时高频信息也可以被主网络集中地学习.另外,考虑到通道和空间维度的相互依赖关系,提出了注意机制块(Attention Mechanism Block,AMBlock)来关注信息的位置,并自适应地调整通道特征尺度,其中通道注意机制和空间注意机制被应用在这种方式中.实验结果表明,该网络可以更好地恢复图像细节,获得更高的图像质量和网络性能. 相似文献
19.
20.
图像超分辨(SR)方法通常利用深度神经网络学习从低分辨率图像(Low Resolution, LR)到高分辨率图像(High Resolution, HR)进行非线性映射重建。但是从LR图像到HR图像的映射往往是一个不适定问题,即存在无限的HR图像可以降采样到同一LR图像。为了解决该问题,本文对LR图像引入附加约束来减少可能的函数空间,并提出了基于双回归网络—双重残差注意力网络(Dual Residual Attention Network, DRAN)的图像超分辨率重构方法(DRAN-SR)。DRAN模型中原始网络负责将低分辨率(LR)图像重构为高分辨率(HR)图像,对偶回归网络负责估计下采样核和重构LR图像,从而形成一个闭环来提供额外的监督效果。实验结果表明,DRAN-SR比现有方法具有更好的峰值信噪比(Peak Signal to Noise Ratio, PSNR)和结构相似性(Structural SIMilarity, SSIM)。 相似文献