首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
对抗样本是当前深度学习神经网络研究的热点问题.目前,对抗样本技术的研究主要分为2方面:生成攻击、检测防御.在总结对抗样本生成攻击技术的基础上,面向图像数据的对抗样本检测与防御技术综述从对抗样本的检测与防御的角度对面向图像数据的对抗样本防御技术进行了总结.综述从特征学习、分布统计、输入解离、对抗训练、知识迁移及降噪6个方面将检测与防御技术进行归类,介绍检测与防御技术的演进,分析其特点、性能,对比不同技术的优缺点,给出了检测效果和防御效果的综合评价.最后对当前该领域的研究情况进行了总结与展望.  相似文献   

2.
深度学习模型在图像分类领域的能力已经超越了人类,但不幸的是,研究发现深度学习模型在对抗样本面前非常脆弱,这给它在安全敏感的系统中的应用带来了巨大挑战。图像分类领域对抗样本的研究工作被梳理和总结,以期为进一步地研究该领域建立基本的知识体系,介绍了对抗样本的形式化定义和相关术语,介绍了对抗样本的攻击和防御方法,特别是新兴的可验证鲁棒性的防御,并且讨论了对抗样本存在可能的原因。为了强调在现实世界中对抗攻击的可能性,回顾了相关的工作。在梳理和总结文献的基础上,分析了对抗样本的总体发展趋势和存在的挑战以及未来的研究展望。  相似文献   

3.
秦书晨  王娟 《智能安全》2024,3(4):81-95
深度神经网络在图像识别等领域取得了显著成就,但其对对抗性攻击的脆弱性对模型的安全性和可靠性构成了严重威胁。为了应对这一挑战,研究者们提出了众多图像对抗样本的检测与防御方法。将现有的方法归纳为检测方法、防御方法及检测与防御结合方法三类,并从域分类视角出发,对各类方法进行了细致的子类划分。分析了这些方法的原理、优势及局限性,为相关领域的研究者提供了比较全面的技术概览。最后,总结了对抗样本检测与防御领域当前面临的挑战,并在跨域检测防御联合框架的构建、自动化技术的引入等方面提出了具体的建议与展望。  相似文献   

4.
随着深度学习理论的发展,深度神经网络取得了一系列突破性进展,相继在多个领域得到了应用.其中,尤其以图像领域中的应用(如图像分类)最为普及与深入.然而,研究表明深度神经网络存在着诸多安全隐患,尤其是来自对抗样本的威胁,严重影响了图像分类的应用效果.因此,图像对抗样本的研究近年来越来越受到重视,研究者们从不同的角度对其进行...  相似文献   

5.
在深度学习中图像分类任务研究里发现,对抗攻击现象给深度学习模型的安全应用带来了严峻挑战,引发了研究人员的广泛关注。首先,围绕深度学习中用于生成对抗扰动的对抗攻击技术,对图像分类任务中重要的白盒对抗攻击算法进行了详细介绍,同时分析了各个攻击算法的优缺点;然后,分别从移动终端、人脸识别和自动驾驶三个现实中的应用场景出发,介绍了白盒对抗攻击技术的应用现状;此外,选择了一些典型的白盒对抗攻击算法针对不同的目标模型进行了对比实验并分析了实验结果;最后,对白盒对抗攻击技术进行了总结,并展望了其有价值的研究方向。  相似文献   

6.
7.
深度神经网络(DNN)在许多深度学习关键系统如人脸识别、智能驾驶中被证明容易受到对抗样本攻击,而对多种类对抗样本的检测还存在着检测不充分以及检测效率低的问题,为此,提出一种面向深度学习模型的对抗样本差异性检测方法.首先,构建工业化生产中常用的残差神经网络模型作为对抗样本生成与检测系统的模型;然后,利用多种对抗攻击攻击深...  相似文献   

8.
深度神经网络容易受到对抗样本的攻击。为了解决这个问题,一些工作通过向图像中添加高斯噪声来训练网络,从而提高网络防御对抗样本的能力,但是该方法在添加噪声时并没有考虑到神经网络对图像中不同区域的敏感性是不同的。针对这一问题,提出了梯度指导噪声添加的对抗训练算法。该算法在训练网络时,根据图像中不同区域的敏感性向其添加自适应噪声,在敏感性较大的区域上添加较大的噪声抑制网络对图像变化的敏感程度,在敏感性较小的区域上添加较小的噪声提高其分类精度。在Cifar-10数据集上与现有算法进行比较,实验结果表明,该方法有效地提高了神经网络在分类对抗样本时的准确率。  相似文献   

9.
深度学习模型被证明存在脆弱性并容易遭到对抗样本的攻击,但目前对于对抗样本的研究主要集中在计算机视觉领域而忽略了自然语言处理模型的安全问题.针对自然语言处理领域同样面临对抗样本的风险,在阐明对抗样本相关概念的基础上,文中首先对基于深度学习的自然语言处理模型的复杂结构、难以探知的训练过程和朴素的基本原理等脆弱性成因进行分析...  相似文献   

10.
对抗样本攻击与防御是最近几年兴起的一个研究热点,攻击者通过微小的修改生成对抗样本来使深度神经网络预测出错。生成的对抗样本可以揭示神经网络的脆弱性,并可以修复这些脆弱的神经网络以提高模型的安全性和鲁棒性。对抗样本的攻击对象可以分为图像和文本两种,大部分研究方法和成果都针对图像领域,由于文本与图像本质上的不同,在攻击和防御方法上存在很多差异。该文对目前主流的文本对抗样本攻击与防御方法做出了较为详尽的介绍,同时说明了数据集、主流攻击的目标神经网络,并比较了不同攻击方法的区别。最后总结文本对抗样本领域面临的挑战,并对未来的研究进行展望。  相似文献   

11.
孙家泽  温苏雷  郑炜  陈翔 《软件学报》2024,35(4):1861-1884
如今,深度神经网络在各个领域取得了广泛的应用.然而研究表明,深度神经网络容易受到对抗样本的攻击,严重威胁着深度神经网络的应用和发展.现有的对抗防御方法大多需要以牺牲部分原始分类精度为代价,且强依赖于已有生成的对抗样本所提供的信息,无法兼顾防御的效力与效率.因此基于流形学习,从特征空间的角度提出可攻击空间对抗样本成因假设,并据此提出一种陷阱式集成对抗防御网络Trap-Net. Trap-Net在原始模型的基础上向训练数据添加陷阱类数据,使用陷阱式平滑损失函数建立目标数据类别与陷阱数据类别间的诱导关系以生成陷阱式网络.针对原始分类精度损失问题,利用集成学习的方式集成多个陷阱式网络以在不损失原始分类精度的同时,扩大陷阱类标签于特征空间所定义的靶标可攻击空间.最终, Trap-Net通过探测输入数据是否命中靶标可攻击空间以判断数据是否为对抗样本.基于MNIST、K-MNIST、F-MNIST、CIFAR-10和CIFAR-100数据集的实验表明, Trap-Net可在不损失干净样本分类精确度的同时具有很强的对抗样本防御泛化性,且实验结果验证可攻击空间对抗成因假设.在低扰动的白盒攻击场景中, T...  相似文献   

12.
张云婷  叶麟  唐浩林  张宏莉  李尚 《软件学报》2024,35(7):3392-3409
对抗文本是一种能够使深度学习分类器作出错误判断的恶意样本,敌手通过向原始文本中加入人类难以察觉的微小扰动制作出能欺骗目标模型的对抗文本.研究对抗文本生成方法,能对深度神经网络的鲁棒性进行评价,并助力于模型后续的鲁棒性提升工作.当前针对中文文本设计的对抗文本生成方法中,很少有方法将鲁棒性较强的中文BERT模型作为目标模型进行攻击.面向中文文本分类任务,提出一种针对中文BERT的攻击方法 Chinese BERT Tricker.该方法使用一种汉字级词语重要性打分方法——重要汉字定位法;同时基于掩码语言模型设计一种包含两类策略的适用于中文的词语级扰动方法实现对重要词语的替换.实验表明,针对文本分类任务,所提方法在两个真实数据集上均能使中文BERT模型的分类准确率大幅下降至40%以下,且其多种攻击性能明显强于其他基线方法.  相似文献   

13.
    
Recent studies show that deep neural networks (DNNs) suffer adversarial examples. That is, attackers can mislead the output of a DNN by adding subtle perturbation to a benign input image. In addition, researchers propose new generation of technologies to produce robust adversarial examples. Robust adversarial examples can consistently fool DNN models under predefined hyperparameter space, which can break through some defenses against adversarial examples or even generate physical adversarial examples against real-world applications. Behind these achievements, expectation over transformation (EOT) algorithm plays as the backbone framework for generating robust adversarial examples. Though EOT framework is powerful, we know little about why such a framework can generate robust adversarial examples. To address this issue, we do the first work to explain the principle behind robust adversarial examples. Then, based on the findings, we point out that traditional EOT framework has a performance problem and propose an adaptive sampling algorithm to overcome such a problem. By modeling the sampling process as classic Coupon Collector Problem, we prove that our new framework reduces the cost from O◂()▸(n log(n)) to O(n), where n denotes the number of sampling points. Under the view of computational complexity, the algorithm is optimal for this problem. The experimental results show that our algorithm can save up to 23% overhead in average. This is significant for black-box attack, where the cost is charged by the amount of queries.  相似文献   

14.
目的 对抗样本严重干扰了深度神经网络的正常工作。现有的对抗样本检测方案虽然能准确区分正常样本与对抗样本,但是无法判断具体的对抗攻击方法。对此,提出一种基于多质量因子压缩误差的对抗样本攻击方法识别方案,利用对抗噪声对JPEG压缩的敏感性实现攻击方法的识别。方法 首先使用卷积层模拟JPEG压缩、解压缩过程中的颜色转换和空频域变换,实现JPEG误差在图形处理器(graphic processing unit,GPU)上的并行提取。提出多因子误差注意力机制,在计算多个质量因子压缩误差的同时,依据样本差异自适应调整各质量因子误差分支的权重。以特征统计层为基础提出注意力特征统计层。多因子误差分支的输出经融合卷积后,获取卷积层多维特征的同时计算特征权重,从而形成高并行对抗攻击方法识别模型。结果 本文以Image Net图像分类数据集为基础,使用8种攻击方法生成了15个子数据集,攻击方法识别率在91%以上;在快速梯度符号法(fast gradient sign method,FGSM)和基本迭代法(basic iterative method,BIM)数据集上,噪声强度识别成功率超过96%;在对抗样本...  相似文献   

15.
卷积神经网络的发展使得图像验证码已经不再安全.基于卷积神经网络中存在的通用对抗扰动,提出了一种图像验证码的保护方法.提出了一种快速生成通用对抗扰动的算法,将方向相似的对抗扰动向量进行叠加以加快生成通用对抗扰动的速度.基于此算法设计了图像验证码的保护方案,将通用对抗扰动加入到验证码的图像中使其无法被卷积神经网络模型识别....  相似文献   

16.
神经网络模型已被广泛应用于多个研究领域,但神经网络模型本身存在易受到对抗样本攻击的缺点,如在图像分类中,只需在原始图片中添加微小的对抗扰动生成对抗样本,就可以轻易欺骗神经网络分类模型,这给许多领域的应用安全带来严重的威胁。因此,研究如何提高神经网络分类模型对对抗样本攻击的防御能力成为深度学习安全领域的研究热点。目前常用的对抗样本攻击防御方法往往只侧重于提高模型对对抗样本分类的鲁棒性,或者只侧重于检测拦截对抗样本,而对抗训练需要收集大量对抗样本,且难以防御新类型的对抗样本攻击,对于使用额外的分类器去检测对抗样本的方法,则存在着易受到二次攻击等缺点。针对这些问题,提出一种基于孪生神经网络结构的对抗样本攻击动态防御方法,利用孪生结构可比较两个输入相似性的特点,从孪生神经网络两侧的预测差异着手,检测图片在动态滤波前后是否存在不同的攻击效果,从而筛选出带有动态扰动的对抗样本。实验结果表明,在没有收集特定种类的对抗样本进行训练的情况下,该方法对多种对抗样本攻击取得了良好的通用防御效果,其中在FGSM对抗样本测试集上的防御准确率达到95.35%,在DeepFool和JSMA对抗样本测试集上的防御准确...  相似文献   

17.
自然语言处理技术在文本分类、文本纠错等任务中表现出强大性能,但容易受到对抗样本的影响,导致深度学习模型的分类准确性下降。防御对抗性攻击是对模型进行对抗性训练,然而对抗性训练需要大量高质量的对抗样本数据。针对目前中文对抗样本相对缺乏的现状,提出一种可探测黑盒的对抗样本生成方法 WordIllusion。在数据处理与计算模块中,数据在删除标点符号后输入文本分类模型得到分类置信度,再将分类置信度输入CKSFM计算函数,通过计算比较cksf值选出句子中的关键词。在关键词替换模块中,利用字形嵌入空间和同音字库中的相似词语替换关键词并构建对抗样本候选序列,再将序列重新输入数据处理与计算模块计算cksf值,最终选择cksf值最高的数据作为最终生成的对抗样本。实验结果表明,WordIllusion方法生成的对抗样本在多数深度学习模型上的攻击成功率高于基线方法,在新闻分类场景的DPCNN模型上相比于CWordAttack方法最多高出41.73个百分点,且生成的对抗样本与原始文本相似度很高,具有较强的欺骗性与泛化性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号