首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
刘元刚  徐强  李红  张联齐 《电源技术》2015,(3):464-465,505
采用碳酸盐共沉淀法制备了LiNi0.5Mn0.5O2正极材料。研究了原料中不同锂含量对电极性能的影响。材料分析结果表明,碳酸盐共沉淀法合成的LiNi0.5Mn0.5O2材料中Ni和Mn分布均匀,离子混排小,结构有序。充放电测试结果表明,原料中过量锂的存在极大地改善了LiNi0.5Mn0.5O2材料的循环性能和倍率性能。在2.5~4.5 V的电压范围内,原料中锂未过量的LiNi0.5Mn0.5O2电极首次和80次循环后的放电比容量分别为190.3和153 m Ah/g。当原料中锂过量10%时,LiNi0.5Mn0.5O2电极首次和80次循环后的放电比容量分别为180.2和174.6mAh/g,两种电极的容量保持率分别为80.4%和96.9%。当以4C放电时,未过量和过量10%锂的LiNi0.5Mn0.5O2电极的放电比容量分别为91和100mAh/g。  相似文献   

2.
通过液相沉淀法制备球形Ni(OH)2,与Mn(NO3)2和CH3COOLi·2 H2O混合,经高温固相法制备富锂Li1+xNi0.5Mn0.5O2正极材料。采用X射线衍射(XRD)、扫描电镜(SEM)、电化学交流阻抗及恒流充放电测试对样品的结构、形貌和电化学性能进行表征。结果表明,当x=0.2时制备的富锂材料,阳离子混排低、颗粒均匀,表现出最好的电化学性能。在2.0~4.8 V之间,20 m A/g条件下最高放电比容量为201.4 m Ah/g,60 m A/g下放电比容量仍可达到113.1m Ah/g。  相似文献   

3.
通过共沉淀法与高温固相法相结合的方法合成锂离子电池用富锂层状正极材料Li[Li0.17Ni0.17Co0.10Mn0.56]O2,利用液相沉淀法对材料进行Li Co PO4包覆,通过X射线衍射(XRD)、扫描电子显微镜(SEM)对材料物性进行表征,利用恒电流充放电仪对材料电化学性能进行研究,结果表明包覆后材料电化学性能有较大改善,0.05 C首次放电比容量为245m Ah/g,经过50次循环后放电比容量为232 m Ah/g,且经过Li Co PO4包覆后材料首次效率明显提高,同时循环及倍率性能也得到改善,包覆层Li Co PO4不仅允许更多锂离子嵌入材料,而且隔绝富锂材料与电解液接触,有效阻止材料与电解液发生反应。  相似文献   

4.
《电池》2015,(3)
以过渡金属乙酸盐和碳酸锂为原料,使用固相法合成x Li2Mn O3·(1-x)Li Mn0.6Ni0.2Co0.2O2(x=0.7、0.6、0.5和0.4)。对制备的材料进行XRD测试和电化学性能分析。当x=0.5时,材料0.5Li2Mn O3·0.5Li Mn0.6Ni0.2Co0.2O2具有较好的层状结构和电化学性能,以0.1 C在2.0~4.8 V循环,首次充、放电比容量分别为218.0 m Ah/g和162.1 m Ah/g,循环5次的容量保持率为97.91%。  相似文献   

5.
采用聚合物热解的方法合成了富锂正极材料Li[Li0.2Co0.13Ni0.13Mn0.54]O2(RLMO),并对其进行硼磷玻璃(BPG)表面包覆。经过X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)实验表明,材料颗粒尺寸在100~200 nm范围,其表面明显具有非晶包覆层,且表面包覆不会改变材料的主体结构。在2.0~4.8 V范围内进行恒流充放电测试表明,非晶硼磷玻璃包覆材料(BPG-RLMO)具有更高的首次放电比容量(279.5 m Ah/g,30 m A/g)、高的首次库仑效率(91.3%)和优异的循环稳定性(100次循环后容量保持率为86.4%,30 m A/g)。这些结果表明非晶硼磷玻璃包覆可有效抑制电解液的表面分解和所引起的表面结构破坏,提高了材料的首次库仑效率和循环稳定性,为高性能富锂正极材料的发展提供一种可借鉴途径。  相似文献   

6.
通过液相法制得了球形Ni(OH)2,再与Mn(NO3)2、CH3COOLi通过固相法制备了富锂正极材料Li[Li0.2Ni0.2Mn0.6]O2。通过X射线衍射光谱法(XRD)、扫描电子显微镜法(SEM)、粒度分析仪、循环伏安、交流阻抗以及充放电测试对样品的结构、形貌和电化学性能进行了表征。结果表明,合成温度为900℃时,材料结晶度高,阳离子混排程度低,颗粒表面光滑均一;在20 m A/g时,首次放电比容量为174.02 m Ah/g,在60 m A/g的高倍率放电条件下比容量仍可达到80.56m Ah/g。  相似文献   

7.
采用溶胶凝胶法在球形Ni(OH)2颗粒表面包覆钴、锰氧化物,作为镍钴锰氢氧化物浓度梯度包覆的复合前驱体,然后配锂高温焙烧,合成了梯度包覆的镍酸锂复合正极材料Li[Ni0.83Co0.07Mn0.10]O2。采用X射线衍射(XRD)、扫描电镜(SEM)、恒电流充放电测试等方法对材料的结构、表观形貌及电化学性能进行了表征。结果表明,该材料具有良好的六方单相层状α-Na Fe O2结构,呈类球状。切面元素线扫描显示该材料的包覆壳层中锰金属元素呈梯度变化。同时该新型梯度包覆的镍钴锰酸锂复合正极材料表现出了优越的电化学性能:在25℃下,2.8~4.3 V充放电范围,0.5 C首次放电比容量可达190.5 m Ah/g,循环50次容量保持92.5%;55℃下,该材料首次放电比容量可达210.1 m Ah/g,循环50次容量仍能保持81.1%。  相似文献   

8.
采用化学共沉淀法预先合成球形前驱体Ni0.5Co0.2Mn0.3(OH)2,再与锂源共混后高温煅烧合成高容量正极材料Li Ni0.5Co0.3Mn0.2O2。探讨了不同烧结制度对材料结构性能的影响。X射线衍射(XRD)结果表明,产物结构为α-Na Fe O2型层状结构。扫描电子显微镜(SEM)显示材料具有良好的球形形貌。测试材料的电化学性能,在2.75~4.20 V和2.75~4.35 V充放电截止电压,0.5 C充放电电流下,首次放电比容量分别为162.2和172.6 m Ah/g,循环3周后容量保持率分别为96.73%和94.62%。材料还表现出良好的倍率性能。  相似文献   

9.
用溶胶-凝胶法合成锂离子电池用富锂正极材料Li[Li_(0.2)Ni_(0.15)Mn_(0.55)Co_(0.1)]O_2,通过XRD、SEM、电感耦合等离子体发射光谱(ICP-OES)和电化学性能测试考察煅烧温度对合成材料结构和性能的影响。900℃下制备的材料具有典型的α-Na Fe O2层状结构、较好的晶型结构及良好的电化学性能。在2.0~4.8 V充放电,20℃下的0.10 C首次放电比容量为235.4 m Ah/g,库仑效率为78.5%;依次以0.10 C、0.20 C、0.50 C、0.75 C和1.00 C循环10次,再以0.20 C放电,首次1.00 C放电比容量为149.7 m Ah/g,最后一次0.20 C放电比容量为首次0.10 C放电比容量的85.9%。  相似文献   

10.
用固相法合成富锂材料Li[Li0.2Mn0.54Ni0.13Co0.13]O2,通过包覆磷酸铋(Bi PO4)对材料进行表面改性,以提高循环稳定性。XRD、SEM及TEM测试结果表明,包覆材料Li[Li0.2Mn0.54Ni0.13Co0.13]O2/Bi PO4的结构与Li[Li0.2Mn0.54Ni0.13Co0.13]O2相比没有发生变化,Bi PO4均匀地包覆在材料表面,包覆层厚度约为10 nm。在2.0~4.8 V充放电,当电流为0.1 C时,制备的Li[Li0.2Mn0.54Ni0.13Co0.13]O2/Bi PO4的首次库仑效率从Li[Li0.2Mn0.54Ni0.13Co0.13]O2的75%提高到83%,以0.2 C循环100次,放电比容量保持在249 m Ah/g。  相似文献   

11.
以Li Ac·2H2O、Mn(Ac)2·4H2O、Ni(Ac)2·4H2O和Cr(NO3)3·9H2O为原料,柠檬酸为络合剂,用溶胶-凝胶法合成Li1.016Cr0.103Mn0.464Ni0.356O2。通过XRD、SEM、电感耦合等离子体(ICP)发射光谱和电化学性能测试,考察反应温度的影响。材料具有典型的富锂层状固溶体型的晶体结构特征,最佳反应温度为85℃,合成的材料颗粒尺寸均一,约为150 nm。材料在2.0~4.8 V循环,0.1 C(25 m A/g)首次放电比容量为190 m Ah/g;经0.1 C、0.2 C、0.5 C和1.0 C循环20次后,容量保持率分别为86%、88%、90%和88%,且1.0 C最大放电比容量仍保持在95 m Ah/g。  相似文献   

12.
钟卓洪  叶乃清  马真  吴保明 《电源技术》2013,37(8):1310-1313
对低温燃烧法合成的富锂锰基正极材料0.5Li2MnO3-LiNi0.5Mn0.5O2的充放电性能、充放电循环过程中Mn离子的价态变化、电化学阻抗变化以及正极材料的结构变化进行了系统的研究。研究结果表明,在开头的若干次充放电循环中,富锂锰基正极材料0.5Li2MnO3-LiNi0.5Mn0.5O2的放电比容量随循环次数的增加而增加,经过若干次循环后可以达到一个相当高的水平,其循环性能良好。以0.1 C在2.5~4.6 V之间充放电,放电比容量可达244 mAh/g,第50次循环,仍保有233 mAh/g。充放电过程中晶格中的Mn4+离子部分转变为Mn3+并参与电化学反应,这是造成放电比容量随循环次数增加而增加的原因,而显微结构和晶体结构保持稳定及电化学阻抗的降低是材料具有良好循环性能的原因。  相似文献   

13.
以过渡金属硫酸盐和氢氧化锂为原料,采用共沉淀法合成锂离子电池富锂正极材料0.5Li_2MnO_3·0.5LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2。通过X射线衍射(XRD)、扫描电子显微镜(SEM)和电化学性能测试对所得样品的结构、形貌及电化学性能进行了表征。结果表明:900℃煅烧10 h合成的样品具有较好的层状结构和优异的电化学性能;在30℃以0.1 C的电流密度充放电,2.0~4.8 V电位范围内首次放电比容量高达270.1 m Ah/g,循环100次后放电比容量为212.6 m Ah/g;该材料还表现出较好的倍率性能,以5 C充放电时还有120 m Ah/g的放电比容量。  相似文献   

14.
为了提高锂离子电池三元正极材料Li Ni1/3Co1/3Mn1/3O2的电化学性能,采用共沉淀法在Li Ni1/3Co1/3Mn1/3O2的表面包覆Fe PO4。采用SEM、XRD、EDS及电化学性能测试对制备的包覆材料的形貌、结构及电化学性能进行表征,探索包覆量对其高倍率循环性能的影响。实验结果表明:通过表面包覆有效地抑制了正极材料与电解液的相互作用,改善了材料的高倍率循环性能。当包覆量为2%、1 C电流循环时,首次充放电比容量分别为166.3、143.8 m Ah/g,库仑效率为86.5%;循环100次后,容量保持率为90.8%。  相似文献   

15.
将层状的LiNi1/3Co1/3Mn1/3O2锂离子电池正极材料与尖晶石型的LiMn2O4按质量比为2∶98混合烧结,采用X射线衍射(XRD)、循环伏安法(CV)、交流阻抗(EIS)以及充放电测试研究LiMn2O4对LiNi1/3Co1/3Mn1/3O2电化学性能的影响。研究表明混合LiMn2O4有利于提高LiNi1/3Co1/3Mn1/3O2正极材料的首次库仑效率、循环性能和倍率性能,在3.0~4.3 V以1 C循环,首次放电比容量和库仑效率分别为150.3 m Ah/g和85.5%,循环50次后容量保持率为88.9%;在5 C下充放电仍保持136.2 m Ah/g。循环伏安与交流阻抗测试表明混合2%(质量分数)LiMn2O4可以提升材料的可逆性和放电容量,降低电荷转移电阻。  相似文献   

16.
通过溶胶-凝胶法合成正极材料LiNi0.5Mn0.5O2,为了提高材料LiNi0.5Mn0.5O2的高倍率放电性能,采用Mg进行掺杂。通过X射线衍射(XRD),扫描电镜(SEM),恒电流充放电对材料的结构和形貌及电化学性能进行了研究。结果表明少量Mg的掺杂未影响到LiNi0.5Mn0.5O2的晶体结构,但改善了其电化学性能,其中,当Mg的掺杂量为5%(摩尔分数)时,材料具有更好的电化学性能,4 C放电时,首次放电比容量达到118 m Ah/g,且循环性能良好。  相似文献   

17.
以LiNO_3、Ni(NO_3)_2·6 H_2O、Co(CH_3COO)_2·4 H_2O和Mn(CH_3COO)_2·4 H_2O为原料,用燃烧法制备了富锂层状锂离子电池正极材料Li[Li_(0.2)Mn_(0.54)Ni_(0.13)Co_(0.13)]O_2和不同La掺杂量的正极材料Li[Li_(0.2)Mn_(0.54-x)Ni_(0.13)Co_(0.13)La_x]O_2(x=0,0.01,0.03,0.05)。对制备的样品进行了XRD、S EM、EDS、电池充放电循环、EIS等表征和测试,进一步分析了掺La量对该富锂正极材料结构、形貌及电化学性能的影响。实验结果表明,掺杂前后的四种材料都具有典型的层状α-Na FeO_2结构,说明掺杂后并未改变材料的层状结构;在2.0~4.7 V充放电,当电流为0.1 C(1 C=200 mA/g)时,制备的正极材料Li-[Li_(0.2)Mn_(0.54-x)Ni_(0.13)Co_(0.13)La_x]O_2(x=0.03)具有最高的首次充放电比容量,分别为250.51和179.45 mAh/g,其首次库仑效率从Li[Li_(0.2)Mn_(0.54)Ni_(0.13)Co_(0.13)]O_2的63.5%提高到71.6%,以0.5 C循环50次,放电比容量保持在136.05 mAh/g。  相似文献   

18.
以CH3COOLi、Ni(CH3COO)2和Mn(CH3COO)2为原料,用流变相法合成了正极材料ZnO包覆的Li Ni0.5Mn1.5O4。XRD测试表明:该材料为尖晶石结构。电化学性能测试表明:包覆ZnO后,Li Ni0.5Mn1.5O4在3.5~4.9 V以0.1C充放电的首次放电比容量为137.68 mAh/g,第30次循环的放电比容量为133.78 mAh/g,循环稳定性得到了改善。  相似文献   

19.
锰酸锂正极材料在充放电循环过程中容量衰减严重,严重影响其大规模应用。针对其容量衰减严重的问题,通过固相制备出Li_(0.95)Na_(0.05)Mg_(0.1)Mn_(1.9)O_4正极材料,并用X射线衍射光谱法(XRD)、扫描电子显微镜法(SEM)、能量散射光谱(EDS)、充放电测试、CV和EIS对其结构、形貌及电化学性能进行了研究。结果表明,Mg2+、Na+的掺杂未改变Li Mn2O4的结构。在0.2 C下,样品Li Mn2O4和Li_(0.95)Na_(0.05)Mg_(0.1)Mn_(1.9)O_4的首次放电比容量分别为127.1 m Ah/g和123.3 m Ah/g,充放电循环100次后,其容量保持率分别为77.34%和94.81%,Mg2+、Na+掺杂后,材料的初始放电比容量略有降低,但循环性能明显得到了改善。在10 C下,Li_(0.95)Na_(0.05)Mg_(0.1)Mn_(1.9)O_4的放电比容量高达92.4 m Ah/g。实验表明,Mg2+、Na+的共同掺杂有效改善了Li Mn2O4的循环稳定性和倍率性能。  相似文献   

20.
将共沉淀反应与高温固相烧结相结合制备富锂层状正极材料Li[Li0.17Ni0.17Co0.10Mn0.56]O2。用XRD、SEM、充放电和电化学阻抗谱(EIS)等方法研究烧结温度对产物电化学性能的影响。在850℃下烧结得到的材料,循环性能和倍率性能良好。以0.05 C(1.00 C=250 mA/g)的电流在2.0~4.6 V放电,样品电池的首次放电比容量可达260.5 mAh/g。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号