首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 264 毫秒
1.
Adaptive switching between multiple-input multiple-output (MIMO) transmission strategies like diversity and spatial multiplexing is a flexible approach to respond to channel variations. It is desirable to obtain accurate estimates of the switching points between these transmission schemes to realize the capacity gains made possible by adaptive switching. In this paper, it is shown that the accuracy of switching point estimates for switching between statistical beamforming and spatial multiplexing is improved by taking into account the effects of mutual coupling between antenna array elements. The impact of mutual coupling on the ergodic capacities of these two transmission strategies is analyzed, by deriving expressions for the same. Adaptive switching between combinations of transmission strategies and antenna array configurations (using reconfigurable antenna arrays) is shown to produce maximum capacity gains. Expressions for the switching points between transmission strategies and/or antenna configurations, including mutual coupling effects, are derived and used to explore the influence of mutual coupling on the estimates. Finally, measurements taken from reconfigurable rectangular patch antenna arrays are used to validate the analytical results.  相似文献   

2.
Multiple-input-multiple-output measurements and modeling in Manhattan   总被引:8,自引:0,他引:8  
Narrowband multiple-input-multiple-output (MIMO) measurements using 16 transmitters and 16 receivers at 2.11 GHz were carried out in Manhattan. High capacities were found for full, as well as smaller array configurations, all within 80% of the fully scattering channel capacity. Correlation model parameters are derived from data. Spatial MIMO channel capacity statistics are found to be well represented by the separate transmitter and receiver correlation matrices, with a median relative error in capacity of 3%, in contrast with the 18% median relative error observed by assuming the antennas to be uncorrelated. A reduced parameter model, consisting of 4 parameters, has been developed to statistically represent the channel correlation matrices. These correlation matrices are, in turn, used to generate H matrices with capacities that are consistent within a few percent of those measured in New York. The spatial channel model reported allows simulations of H matrices for arbitrary antenna configurations. These channel matrices may be used to test receiver algorithms in system performance studies. These results may also be used for antenna array design, as the decay of mobile antenna correlation with antenna separation has been reported here. An important finding for the base transmitter array was that the antennas were largely uncorrelated even at antenna separations as small as two wavelengths.  相似文献   

3.
为满足5G 移动通信系统对信道容量的要求,提出了一种应用于5G 移动终端的双频多输入多输出(MIMO)天线系统。它由沿移动终端两个长边垂直放置的八个天线单元组成。该天线系统可以覆盖中国工业和信息化部(MIIT)所规划的3.3 ~ 3.6 GHz 和4.8 ~ 5 GHz 两个频段,且低频段和高频段的天线效率分别高于61% 和50%。通过优化各天线的相对位置和放置方向,使得各端口之间的隔离度优于15 dB。为更好评估天线系统性能,计算了MIMO天线的包络相关系数(ECC)和信道容量(CC)。所得该MIMO 天线系统在工作频段内ECC均小于0.1,且信道容量峰值可以达到36.8 bps/ Hz。同时,制作并测量了MIMO 天线样品,测试结果与仿真结果表现出良好的一致性。  相似文献   

4.
Increasing demand for high-performance 4G broadband wireless is enabled by the use of multiple antennas at both base station and subscriber ends. Multiple antenna technologies enable high capacities suited for Internet and multimedia services, and also dramatically increase range and reliability. In this article we describe a multiple-input multiple-output OFDM wireless communication system, lab test results, and field test results obtained in San Jose, California. These are the first MIMO system field tests to establish the performance of MIMO communication systems. Increased capacity, coverage, and reliability are clearly evident from the test results presented in this article  相似文献   

5.
Base station antenna arrays are a promising method for providing significant capacity increases in cellular mobile radio systems. This paper examines receiver structures and algorithms to assess the potential capacity gains from the employment of multiple receiver antenna elements, of different sizes, for code division multiple access (CDMA) systems. It considers antenna arrays for the mobile to-base station or reverse link of a CDMA cellular system such as the IS-95 standard. It begins with an introduction to CDMA communication systems and also addresses the general topic of antenna array receivers. Channel modelling is then discussed, as this will influence the design of CDMA receivers. The specific form of receiver array processing algorithms is then discussed and some performance comparisons provided. Finally, the most important reason for implementing antenna array systems, the capacity gains which are achievable, is indicated  相似文献   

6.
This paper clarifies the influence of the antenna configuration on the achievable throughput in a real indoor propagation environment for 2-by-2 single-user (SU) multiple-input multiple-output (MIMO) in the Long Term Evolution (LTE)-Advanced uplink using single carrier-based radio access. In indoor experiments conducted in an office at walking speed, we consider four antenna configurations: co-polarized antennas with a long or small separation, cross-polarized antenna, and a distributed antenna arrangement. The experimental results show that when rank-2 MIMO spatial multiplexing is applied, the cross-polarized antenna configuration achieves a higher user throughput than the other antenna configurations. Furthermore, we show that when closed-loop rank-1 precoding is applied, the cross-polarized antenna configuration is effective in stably achieving a relatively high throughput regardless of the tilt angle of the mobile station transmitter antenna, although the other antenna configurations indicate better throughput under ideal antenna-tilt angle conditions.  相似文献   

7.
Higher system capacities can be achieved if multiple antennas are used on both sides of the wireless link, thus creating a multiple-input-multiple-output (MIMO) system. In this work, the maximization of MIMO system capacity in Rayleigh fading, spatially correlated channels involving practical antenna arrays is challenged through inter-element spacing optimization. The system capacity is evaluated using a proposed formula that takes into account both antenna mutual coupling and signal correlation. Capacity values turn out to outperform the ones obtained considering the conventional antenna array geometries.  相似文献   

8.
It has been shown that code-division multiple-access (CDMA) systems that employ digital beamforming and base station antenna arrays have the potential to increase capacity significantly. Therefore, accurate performance prediction of such systems is important. We propose to take the electromagnetic behavior of the base station antenna array into account, as well as its impact on wireless channel propagation. Specifically, the wideband channel introduces scattering, while the mobile environment causes Doppler fading, which in turn degrades power controllability. We develop a more accurate performance analysis of antenna arrays, where the performance degradation in digital beamforming, due to the combination of mutual coupling, scatter and imperfect power control, and its impact on uplink CDMA system capacity is quantified. A Rayleigh fading amplitude with varying angle-of-arrival spread is assumed, and maximum signal-to-noise ratio beamforming weights are used. These weights are further correlated with mutual coupling at the base station array. Despite the degradation due to the combination of mutual coupling, scattering, and imperfect power control, significant capacity increases are possible.  相似文献   

9.
A stochastic MIMO radio channel model with experimental validation   总被引:22,自引:0,他引:22  
Theoretical and experimental studies of multiple-input/multiple-output (MIMO) radio channels are presented. A simple stochastic MIMO model channel has been developed. This model uses the correlation matrices at the mobile station (MS) and base station (BS) so that results of the numerous single-input/multiple-output studies that have been published in the literature can be used as input parameters. The model is simplified to the narrowband channels. The validation of the model is based upon data collected in both picocell and microcell environments. The stochastic model has also been used to investigate the capacity of MIMO radio channels, considering two different power allocation strategies, water filling and uniform and two different antenna topologies, 4/spl times/4 and 2/spl times/4. Space diversity used at both ends of the MIMO radio link is shown to be an efficient technique in picocell environments, achieving capacities within 14 b/s/Hz and 16 b/s/Hz in 80% of the cases for a 4/spl times/4 antenna configuration implementing water filling at a SNR of 20 dB.  相似文献   

10.
A 3-D reference model is proposed for multiple-input multiple-output (MIMO) mobile-to-mobile (M-to-M) multipath-fading channels. From this model, a closed-form joint space-time correlation function is derived for a 3-D nonisotropic scattering environment. Two sum-of-sinusoids-based 3-D simulation models for MIMO M-to-M multipath-fading channels are proposed. The statistics of the simulation models are verified by simulation. Finally, these simulation models are used to evaluate the effect of the space-time correlation on the outage capacity of uniform linear antenna arrays and to compare the capacities of linear, circular, and spherical antenna arrays.  相似文献   

11.
Analysis and design of multielement antenna systems in mobile fading channels require a model for the space-time cross correlation among the links of the underlying multiple-input multiple-output (MIMO) channel. In this paper, we propose a general space-time cross-correlation function for mobile frequency nonselective Rice fading MIMO channels, in which various parameters of interest such as the angle spreads at the base station and the user, the distance between the base station and the user, mean directions of the signal arrivals, array configurations, and Doppler spread are all taken into account. The new space-time cross-correlation function includes all the relevant parameters of the MIMO fading channel in a clean compact form, suitable for both mathematical analysis and numerical calculations/simulations. It also covers many known correlation models as special cases. We demonstrate the utility of the new space-time correlation model by clarifying the limitations of a widely accepted correlation model for MIMO fading channels. As another application, we quantify the impact of nonisotropic scattering around the user, on the capacity of a MIMO fading channel  相似文献   

12.
In code division multiple access (CDMA) systems, the capacity of forward link (FL) communication to mobile receivers is limited primarily by co‐channel interference (CCI). Adaptive antenna arrays (AAAs) that use antenna arrays along with advanced signal processing at the base station (BS) have been proposed to mitigate this limitation. For a 3G CDMA cellular network, where each BS equipped with an AAA serves mixture of voice and data users within its coverage, we study FL capacity and investigate the effects of different factors (array topology, multipath angle spread, data rate, and beamforming algorithm) on this capacity under Rayleigh fading channel. By modeling the instantaneous signal‐to‐interference power ratio received at the mobile, we derive the system outage equation that considers blocking of either desired voice or data user. Simulation results show that for the same element spacing and number of antenna elements per cell, the uniform circular array (UCA) topology results in larger capacity than the sectorized uniform linear array (ULA) topology does, and that a larger angle spread or data user rate reduces FL capacity. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
We analyze asymptotic ergodic capacity of multidimensional vector-sensor array MIMO (PMD-MIMO) channels established by the use of dual-polarized antennas in the form of 1D, 2D and/or 3D MIMO arrays. Based on the identification of the decomposition of PMD-MIMO channels into multiple independently-fading and scaled classical MIMO channels in parallel, we consequently derive corresponding asymptotic ergodic capacities analytically via tools out of free probability theory. The analysis of derived asymptotic ergodic capacity expressions in terms of antenna locus aspect ratio ?, average symbol SNR per antenna ˉ?s and cross-polar discrimination XPD as well as comparison with asymptotic ergodic capacity of classical MIMO channels present important gains in using compact multidimensional vector-sensor array MIMO systems in asymptotic regimes.  相似文献   

14.
采用2维射线跟踪法分析了非视距室内环境中天线间隔、天线阵形对MIMO系统容量和互补累积分布函数(CCDF)的影响。结果表明随着天线间隔减小,MIMO系统容量降低。10%中断容量表明,天线间隔相同时,有独立同分布瑞利信道容量大于线性阵容量大于方阵容量或者圆形阵容量的关系。当天线间隔大于等于3 时,不同天线阵列阵形对容量影响非常小,此时i.i.d.瑞利信道理论容量几乎全部实现。当天线间隔小于等于1 时,天线阵列阵形对容量影响较大,矩形阵和圆形阵MIMO系统容量相差较小,但都显著小于线性阵列系统容量。在非视距的室内环境中,要实现最大的MIMO容量增益,设计天线阵列时应该对天线间隔和阵列阵形综合考虑。  相似文献   

15.
MIMO systems are usually associated with high scattering isotropic propagation while the use of directive antennas is associated with free space conditions. We found outdoor-indoor channels to be in between these two extremes, in the sense that we observed directivity - and - MIMO gain, for the same ensemble of channels. Our observation is based on measurements with directive (8 dB) and dipole antennas. Median MIMO capacities were found to be about 80% of the ideal (Rayleigh i.i.d.), at 5 dB Signal to Noise Ratio (SNR), for both types of antennas. Using properly aimed directive antennas, the SNR was found on average to be 5.4 dB above that obtainable with dipoles, somewhat less than the 7 dB antenna gain difference. Thus, isotropic propagation, which would have negated directivity gains, cannot be justified in general. We empirically established that aiming for largest received power is the best array pointing strategy with directive antennas. Combining MIMO processing and angular search resulted on average in gains of 70% over the median capacities obtained with dipoles. Therefore it may in some cases be convenient to arrange subgroups of antennas for beamforming, and then process the thus reduced number of radio channels for MIMO gain.  相似文献   

16.
Antenna diversity in mobile communications   总被引:11,自引:0,他引:11  
The conditions for antenna diversity action are investigated. In terms of the fields, a condition is shown to be that the incident field and the far field of the diversity antenna should obey (or nearly obey) an orthogonality relationship. The role of mutual coupling is central, and it is different from that in a conventional array antenna. In terms of antenna parameters, a sufficient condition for diversity action for a certain class of high gain antennas at the mobile, which approximates most practical mobile antennas, is shown to be zero (or low) mutual resistance between elements. This is not the case at the base station, where the condition is necessary only. The mutual resistance condition offers a powerful design tool, and examples of new mobile diversity antennas are discussed along with some existing designs.  相似文献   

17.

In this paper, two element multiple input–multiple output (MIMO) meander line antenna systems with improved isolation performance and compact size are proposed and fabricated in WLAN frequency band. To increase isolation among antenna elements, a novel metamaterial spiral S-shaped resonator is embedded between two radiating elements. The proposed resonator has planar configuration and miniaturized size and is capable of blocking electromagnetic propagation between antenna elements by exhibiting negative effective permeability in the desired frequency band. To illustrate and evaluate the design process, two design samples are fabricated and tested in WLAN frequency band and the agreement among measurement and simulation results approves the design method. In the frequency range of 2.38–2.48 GHz, some MIMO communication system requirements like total active reflection coefficient, envelope correlation coefficient and capacity loss are tested on design samples which show satisfactory results, so this method can be employed in designing array antennas for small mobile communication systems. The designed MIMO antenna systems separated by 13.8 mm (less than λ/9), has better than ??40 dB isolation coefficient and near zero correlation coefficient and capacity loss at the operating frequency (2.4 GHz).

  相似文献   

18.
1 Introduction Digital communication using MI MO has recently e-merged as one of the most significant technical break-throughs in modern wireless communications .Foschini ,Telatar and others saythat the capacity can beincreasedlinearly with the mini mum antenna numbers of thetransmitter and receiver if the scattering environment isrich and there is no correlation between the antennapairs at the transmitter and the receiver[1 ~2]. Toachieve these capacities coding techniques such asBLAST an…  相似文献   

19.
This paper presents the design of a miniaturized broadband monopole antenna for 5G and Wireless Local Area Network (WLAN) applications in mobile handsets. The proposed monopole evolved from a rectangular geometry of size 12 × 5 mm. The slot and stub loading techniques are used to improve the impedance matching offered by the antenna. Furthermore, bandwidth broadening is achieved using lumped elements loaded onto the aperture of the antenna. The proposed miniaturized antenna exhibits a measured impedance bandwidth of 63.6% (3.0–5.8 GHz) covering the 5G spectrum allocations under sub-6 GHz and the WLAN services. The antenna elements are replicated along the sides of the mock mobile handset PCB to study the functionality of the eight-element MIMO antenna. The prototype MIMO antenna fabricated and tested in the laboratory offers a peak gain of 3 dBi and total efficiency greater than 72%. Owing to miniaturization, the spatial distribution of the antenna element provides a low envelope correlation (ECC) of less than 0.2 and good diversity gain (DG) greater than 7.8 dB. In addition, the mean effective gain (MEG), channel capacity loss (CCL), multiplexing efficiency (ME), and total active reflection coefficient (TARC) are evaluated and presented. The estimated MIMO metrics are within the desired range of operation and hence make the antenna suitable for a complex propagation environment. The prototype antenna is developed on a thin microwave laminate with low-loss characteristics and tested under laboratory conditions. The outcomes indicate that the proposed eight-element antenna can be applied to 5G MIMO communications.  相似文献   

20.
Massive multiple-input multiple-output (MIMO) requires a large number (tens or hundreds) of base station antennas serving for much smaller number of terminals, with large gains in energy efficiency and spectral efficiency compared with traditional MIMO technology. Large scale antennas mean large scale radio frequency (RF) chains. Considering the plenty of power consumption and high cost of RF chains, antenna selection is necessary for Massive MIMO wireless communication systems in both transmitting end and receiving end. An energy efficient antenna selection algorithm based on convex optimization was proposed for Massive MIMO wireless communication systems. On the condition that the channel capacity of the cell is larger than a certain threshold, the number of transmit antenna, the subset of transmit antenna and servable mobile terminals (MTs) were jointly optimized to maximize energy efficiency. The joint optimization problem was proved in detail. The proposed algorithm is verified by analysis and numerical simulations. Good performance gain of energy efficiency is obtained comparing with no antenna selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号