首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A uniform nanolayer of europium-doped Gd2O3 was coated on the surface of preformed submicron silica spheres by a Pechini sol-gel process. The resulted SiO2 @ Gd2O3:Eu3+ core-shell structured phosphors were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), photoluminescence (PL) spectra as well as kinetic decays. The XRD results show that the Gd2O3:Eu3+ layers start to crystallize on the SiO2 spheres after annealing at 400 degrees C and the crystallinity increases with raising the annealing temperature. The core-shell phosphors possess perfect spherical shape with narrow size distribution (average size: 640 nm) and non-agglomeration. The thickness of the Gd2O3:Eu3+ shells on the SiO2 cores can be adjusted by changing the deposition cycles (70 nm for three deposition cycles). Under short UV excitation, the obtained SiO2@Gd2O3:Eu3+ particles show a strong red emission with 5D0-7F2 (610 nm) of Eu3+ as the most prominent group. The PL intensity of Eu3+ increases with increasing the annealing temperature and the number of coating cycles.  相似文献   

2.
Chang M  Tie S 《Nanotechnology》2008,19(7):075711
A novel polychromic phosphor with core-shell heteronanostructure has been prepared to improve the chromatic index of phosphors. As for the first example, Y(2)O(3):Eu(3+)@SiO(2)@YVO(4):Eu(3+), its synthetic route, structure and optical properties are presented in this paper. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), high resolution transmission electron microscopy (HR-TEM), energy-dispersive x-ray spectra (EDS) and photoluminescence (PL) were all employed to characterize the composite core-shell phosphors. The XRD, FE-SEM and HR-TEM results indicate that the SiO(2) and YVO(4):Eu(3+) layers have been successfully coated on Y(2)O(3):Eu(3+) nanoparticles and SiO(2) layer, respectively: these layers were further verified by the EDS. The PL showed that the red-emitting phosphor Y(2)O(3):Eu(3+)@SiO(2)@YVO(4):Eu(3+) possessed the independent luminescent properties of both the core Y(2)O(3):Eu(3+) and the shell YVO(4):Eu(3+). The emissions were dominated by [Formula: see text] or [Formula: see text] transitions of Eu(3+) when excited with different wavelengths. Since this broad-band response to excitation in the range of 225-340?nm gave more red/dark red emissions found at 612, 616 and 620?nm, the novel phosphor Y(2)O(3):Eu(3+)@SiO(2)@YVO(4):Eu(3+) could have potential biological labeling applications with wide flexibility.  相似文献   

3.
Ba3MgSi2O8:Eu2+, Mn2+ phosphors were synthesized by the sol-gel method and high temperature solid-state reaction method, respectively. XRD (X-ray diffraction), FT-IR (Fourier transform infrared spectroscopy), PL (photoluminescence spectra), and PLE (photoluminescence excitation spectra) were measured to characterize the samples. Emission and excitation spectra of our Ba3MgSi2O8:Eu2+, Mn2+ phosphors monitored at 441, 515, and 614 nm are depicted in the paper. The emission intensities of 441 and 515 nm emission bands increase with increasing Eu2+ concentration, while the peak intensity of the 614 nm band increases with increasing Mn2+ concentration. We conclude that the 515 nm emission band is attributed to the 4f(6)5d transition of Eu2+ ions substituted by Ba2+ sites in Ba2SiO4. The 441 nm emission band originates from Eu2+ ions, while the 614 nm emission band originates from Mn2+ ions of Ba3MgSi2O8:Eu2+, Mn2+. Nano-crystalline Ba3MgSi2O8:Eu2+, Mn2+ phosphors prepared by the sol-gel method show higher color rendering and better color temperature in comparison with the samples prepared by high temperature solid-state reaction method.  相似文献   

4.
The Sr2SiO4:Eu3+, Dy3+ phosphors for white light emitting diodes (LEDs) were synthesized by the sol-gel method. The microstructure and luminescent properties of the obtained Sr2SiO4:Eu3+, Dy3+ particles were well characterized. The results demonstrate that the Sr2SiO4:Eu3+, Dy3+ particles, which have spherical morphology, emitted an intensive white light emission under excitation at 386 nm. The phosphors show three emission peaks: the blue emission at 486 nm corresponding to the 4F(9/2)-6H(15/2) transition of Dy3+, the yellow emission at 575 nm corresponding to the 4F(9/2)-6H(13/2) transition of Dy3+, and the red emission at 615 nm corresponding to the 5D0-7F2 transition of Eu3+. At the same time, the effect of Eu3+ concentration on the emission intensities of Sr2SiO4:Eu3+, Dy3+ was investigated in detail. The phosphors used for white LEDs were obtained by combining near ultraviolet (NUV) light (386 nm) with Sr2SiO4:0.04Dy3+, 0.01Eu3+ phosphors with the characteristic of Commission Internationale de l'Eclairage (CIE) chromaticity coordinate (x, y) of (0.33, 0.34), and color temperature Tc of 5,603 K. In addition, the effect of the charge compensators (Li+, Na+, and K+ ions) on the photoluminescence (PL) emission intensities were studied.  相似文献   

5.
In this paper, nanocrystalline YVO4:Eu3+ powders have been successfully synthesized via high-temperature solution-phase synthesis process. The nanocrystalline YVO4:Eu3+ particles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV/Nis absorption spectra and luminescence spectra, luminescence decay curve and Fourier transform infrared (FT-IR), X-ray photoelectron spectra (XPS) respectively. The as-prepared nanocrystalline YVO4:Eu3+ particles are well crystallized with ellipsoidal morphology. The emission of YVO4:Eu3+ particles show emission originating from the 5D0 level, with 5D0-7F2 at 616 nm as the most prominent group. The excitation spectrum fits basically with the absorption spectrum from the vanadate ions. FT-IR and XPS spectra indicate that the surface ligands of nanocrystalline particles were oleic acid and oleylamine. The lifetime for the luminescence of Eu3+ in the as-prepared YVO4:Eu3+ samples are shorter than that of the bulk material due to the absorption of organic ligands on the nanoparticle surface.  相似文献   

6.
Trivalent dysprosium (Dy3+) activated magnesium alluminate phosphors were synthesized by high temperature solid state reaction method. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FT-IR), photoluminescence (PL) spectra as well as lifetimes were used to characterize the resulting phosphors. The results show that the obtained MgAl2O4:Dy3+ phosphors have good crystallinity, spherical morphology with sizes ranged from 120 to 140 nm and strong blue emission under an excitation of 258 nm. The emission spectrum of this phosphor consists of two emission bands: blue band and yellow band, and the emission intensity of the former is stronger than that of the later. Luminescence quenching is explained and the corresponding luminescence mechanisms have been proposed.  相似文献   

7.
采用高温固相反应法制备了一系列白光LED用CaSi2O2N2:0.05Eu2+,xDy3+,xLi+(0≤x≤0.03)荧光粉.利用X射线衍射仪对样品的物相结构进行了分析,结果表明:Dy3+和Li+离子的掺入没有改变CaSi2O2N2:Eu2+荧光粉的主晶相.利用荧光光谱仪对样品的发光性能进行了测试,发现所有样品的激发光谱均覆盖了从近紫外到蓝光的较宽范围,400 nm激发下得到的发射光谱为宽波段的单峰,峰值位于545 nm左右,是Eu2+离子5d-4f电子跃迁引起的.Dy3+离子掺杂可以提高CaSi2O2N2:Eu2+荧光粉的发光强度,Dy3+与Li+共掺杂可进一步提高荧光粉的发光强度,当Dy3+和Li+的掺杂量为1mol%时,荧光粉的发光强度达到最大值,是单掺杂Eu2+的荧光粉发光强度的157%.  相似文献   

8.
Different concentrations of Al3+-doped YPO4:Eu0.05 powder phosphors have been synthesized by the conventional solid state reaction method and are characterized by X-ray diffraction (XRD), field emission scanning electronic microscopy (FESEM), photoluminescence excitation (PLE) and emission (PL) investigations. The influence of Al3+-doping on crystallinity, grain size and PL intensity of the YPO4:Eu phosphors has been investigated. These characteristics are found improved with increase in concentration of Al3+ ions from 0.00 to 0.10 mol and then decreased for higher concentrations. The results are discussed in comparison with earlier reported similar works.  相似文献   

9.
Spherical MWO4:Tb3+ (M = Ca, Sr, Ba) particles were synthesized by a hydrothermal route at 180 °C for 10 h. The synthesized MWO4:Tb3+ particles were characterized by X-ray powder diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and luminescence spectroscopy. The XRD and FT-IR results show that MWO4:Tb3+ particles with a scheelite-type crystal structure were synthesized successfully. The SEM and TEM results show that uniform spherical particles in the range of hundreds of nanometers were obtained. The possible growth mechanism may be attributed to a typical Ostwald ripening process. The excitation spectra of MWO4:Tb3+ phosphors show a strong absorption band of the WO4 2? group and some weak absorption bands of Tb3+ ions. The emission spectra of MWO4:Tb3+ phosphors show the characteristic emission bands of Tb3+ ions. CaWO4:Tb3+ sample has the highest excitation and emission intensity.  相似文献   

10.
A core-shell structured composite, SiO2 coated ZnMnFe2O4 spinel ferrite nanoparticles (average diameter of approximately 80 nm), was prepared by hydrolysis of tetraethyl orthosilicate (TEOS) in the presence of ZnMnFe2O4 nanoparticles (average diameter of approximately 10 nm) synthesized by a hydrothermal method. The obtained samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and field emission scanning electron microscopy (FESEM). The magnetic measurements were carried out on a vibrating sample magnetometer (VSM), and the measurement results indicate that the core-shell samples possess better magnetic properties at room temperature, compared with paramagnetic colloids with a magnetic core by a coprecipitation method. These core-shell nanospherical particles with self-assembly under additional magnetic fields could have potential application in biomedical systems.  相似文献   

11.
Nano-submicrostructured CaWO4, CaWO4 : Pb2+ and CaWO4 : Tb3+ particles were prepared by polyol method and characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transform infrared spectra (FT-IR), thermogravimetry-differential thermal analysis (TG-DTA), photoluminescence (PL), cathodo-luminescence (CL) spectra and PL lifetimes. The results of XRD indicate that the as-prepared samples are well crystallized with the scheelite structure of CaWO4. The FE-SEM images illustrate that CaWO4 and CaWO4 : Pb2+ and CaWO4 : Tb3+ powders are composed of spherical particles with sizes around 260, 290, and 190 nm respectively, which are the aggregates of smaller nanoparticles around 10-20 nm. Under the UV light or electron beam excitation, the CaWO4 powders exhibits a blue emission band with a maximum at about 440 nm. When the CaWO4 particles are doped with Pb2+, the intensity of luminescence is enhanced to some extent and the luminescence band maximum is red shifted to 460 nm. Tb(3+)-doped CaWO4 particles show the characteristic emission of Tb3+ 5D4-7FJ (J = 6 - 3) transitions due to an energy transfer from WO4(2-) groups to Tb3+.  相似文献   

12.
为了研究制备复合隐身粒子的方法,采用溶胶-凝胶法制备了核-壳结构SiO2@Bi2O3粒子.通过XRD、TEM及发射率测试仪对制备的材料的结构、形貌和性能进行了表征.XRD表明在700℃可以得到Bi2O3纯相;红外发射率测试表明,Bi2O3具有较低的红外发射率,在SiO2表面包覆Bi2O3后,在3~5μm和8~14μm两个测试波段都能降低SiO2的红外发射率.通过核-壳结构的形式,在较高发射率的样品表面涂覆红外发射率较低的样品,可以提高红外隐身效果.  相似文献   

13.
In this paper, a two-step synthesis method for preparing Eu3+ ion-doped Y2O3@YOF core-shell nanocrystals is introduced. Eu3+ ion-doped Y2O3@YOF core-shell nanocrystals were prepared by combining an autocombustion process with a low temperature solid state reaction. X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), photoluminescence (PL) and fluorescence decay were employed to characterize the prepared samples. The results of XRD, TEM and EDS indicated that the products prepared by this method were not a mixture of Y2O3:Eu3+ and YOF:Eu3+ nanocrystals, but Eu3+ ion-doped Y2O3@YOF core-shell nanocrystals. Compared with Y2O3:Eu3+ nanocrystals, a 20% increment in luminescence intensity was observed in the Eu3+ ion-doped Y2O3@YOF core-shell nanocrystals, thus suggesting that coating with a YOF:Eu3+-shell can efficiently block the nonradiative relaxation channels that are induced by surface defect states.  相似文献   

14.
ZrO2 interface was designed to block the reaction between SiO2 and Y2O3 in SiO2@Y2O3:Eu coreshell structure phosphor. SiO2@ZrO2@Y2O3:Eu core-multi-shell phosphors were successfully synthesized by combing an LBL method with a Sol-gel process. Based on electron microscopy, X-ray diffraction, and spectroscopy experiments, compelling evidence for the formation of the Y2O3:Eu outer shell on ZrO2 were presented. The presence of ZrO2 layer on SiO2 core can block the reaction of SiO2 core and Y2O3 shell effectively. By this kind of structure, the reaction temperature of the SiO2 core and Y2O3 shell in the SiO2@Y2O3:Eu core-shell structure phosphor can be increased about 200-300 degrees C and the luminescent intensity of this structure phosphor can be improved obviously. Under the excitation of ultraviolet (254 nm), the Eu3+ ion mainly shows its characteristic red (611 nm, 5D0-7F2) emissions in the core-multi-shell particles from Y2O3:Eu3+ shells. The emission intensity of Eu3+ ions can be tuned by the annealing temperatures, the number of coating times, and the thickness of ZrO2 interface, respectively.  相似文献   

15.
采用高温固相法制备了NaY(WO4)2:Eu3+发光材料。分别用X射线粉末衍射(XRD)、发光光谱(PL)等手段研究了发光粉的晶体结构以及发光性能。XRD结果表明,Eu3+掺杂浓度达到25%(摩尔分数)时,仍然能够形成纯相的NaY(WO4)2:Eu3+多晶粉末。NaY(WO4)2:Eu3+的激发光谱由强度很大的宽激发带(220~300nm)和锐线谱(峰值位于393nm和465nm)组成,其中宽激发带源于O2-→W6+和O2-→Eu3+电荷转移,锐线谱属于Eu3+的4f-4f跃迁吸收,发射光谱显示随Eu3+浓度的增大,NaY(WO42):Eu3+光发射强度逐渐增大,当Eu3+浓度为20%时,发射强度达到最大,随后出现浓度猝灭。  相似文献   

16.
In display applications, each displays technique needs different phosphors according to its applications. So, in this paper, nano-sized red emitting CaTiO3:Pr3+ powder phosphors were prepared by solvothermal reaction method. The phase purity and the structure of the phosphors were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM). The particles show the spherical morphology, which indicates the good luminescent characteristics. The luminescent properties of CaTiO3:Pr3+ powder phosphors have been carried out by the measurement of their phototluminescence (PL) and phototluminescence excitation (PLE) spectra. The PL spectra shows the strong red emission due to 1D2 --> 3H4 transition. The emissions of intra-4f transitions from the excited states (1D2) to the ground state (3H4) of Pr3+ are mainly observed around from 612 to 618 nm. The effect of the Pr3+ concentration on their photoluminescent properties was investigated extensively. These luminescent powders are expected to find potential applications such as optical display systems.  相似文献   

17.
Eu3+ and Dy(3+)-doped YVO4 nanocrystallites were successfully prepared at 400 degrees C in equal moles of NaNO3 and KNO3 molten salts. X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, transmission electronic microscopy (TEM), photoluminescence (PL) spectrum and lifetime were used to characterize the nanocrystallites. XRD results demonstrate that NaOH concentration and annealing temperature play important roles in phase purity and crystallinity of the nanocrystallites, the optimum NaOH concentration and annealing temperature being 6:40 and 400 degrees C respectively. TEM micrographs show the nanocrystallites are well crystallized with a cubic morphology in an average grain size of about 18 nm. Upon excitation of the vanadate group at 314 nm, YVO4:Eu3+ and YVO4:Dy3+ nanocrystallites exhibit the characteristic emission of Eu3+ and Dy3+, which indicates that there is an energy transfer from the vanadate group to the rare earth ions. Moreover, the structure and luminescent properties of the nanocrystallites were compared with their bulk counterparts with same composition in detail.  相似文献   

18.
NaGd(MoO4)2:Eu3+ (hereafter NGM:Eu) phosphors have been prepared by sol-gel method. The properties of the resulting phosphors are characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), photoluminescence (PL) spectra and decay curve. The excitation spectra of NGM:Eu phosphors are mainly attributed to O → Mo charge-transfer (CT) band at about 282 nm and some sharp lines of Eu3+ f-f transitions in near-UV and visible regions with two strong peaks at 395 and 465 nm, respectively. Under the 395 and 465 nm excitation, intense red emission peaked at 616 nm corresponding to 5D0 → 7F2 transition of Eu3+ are observed for 35 at.% NGM:Eu phosphors as the optimal doping concentration. The luminescence properties suggest that NGM:Eu phosphor may be regarded as a potential red phosphor candidate for near-UV and blue light-emitting diodes (LEDs).  相似文献   

19.
Eu3+ and Dy(3+)-doped YVO4 nanocrystallites were successfully prepared at 400 degrees C in equal moles of NaNO3 and KNO3 molten salts. X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, transmission electronic microscopy (TEM), photoluminescence (PL) spectrum and lifetime were used to characterize the nanocrystallites. XRD results demonstrate that NaOH concentration and annealing temperature play important roles in phase purity and crystallinity of the nanocrystallites, the optimum NaOH concentration and annealing temperature being 6:40 and 400 degrees C respectively. TEM micrographs show the nanocrystallites are well crystallized with a cubic morphology in an average grain size of about 18 nm. Upon excitation of the vanadate group at 314 nm, YVO4:Eu3+ and YVO4:Dy3+ nanocrystallites exhibit the characteristic emission of Eu3+ and Dy3+, which indicates that there is an energy transfer from the vanadate group to the rare earth ions. Moreover, the structure and luminescent properties of the nanocrystallites were compared with their bulk counterparts with same composition in detail.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号