首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 250 毫秒
1.
《煤矿安全》2021,52(2):33-37
针对煤岩在采动荷载作用下渗透率演化规律展开研究,选取河南平顶山矿区煤岩,基于Darcy定律稳态测量法,利用三轴压缩渗透实验装置进行煤岩全应力-应变渗透性实验。实验结果表明:控制渗透气体压力相同,围压的增加,阻止了试件拉伸裂隙的发育,导致煤岩全应力-应变曲线的应力峰值升高、渗透率降低;控制围压相同,煤岩应变-渗透率曲线与应力-应变曲线变化趋势基本相同,且存在因果关系,导致煤岩应变-渗透率曲线较应力-应变曲线具有滞后性。  相似文献   

2.
含瓦斯煤岩卸围压变形特征及瓦斯渗流试验   总被引:5,自引:0,他引:5       下载免费PDF全文
运用自制的含瓦斯煤热流固耦合三轴伺服渗流实验装置,进行了含瓦斯煤岩卸围压瓦斯渗流试验,研究其卸围压过程中的变形和瓦斯渗流特性。研究结果表明,卸围压试验煤样破坏形式是以剪切破坏为主的张剪复合破坏。卸围压过程中,含瓦斯煤岩围压-应变曲线可以分为3个阶段:屈服前阶段、屈服后阶段、破坏失稳阶段。渗透率-应变曲线与围压-应变曲线呈现出明显的对应关系,表明围压对煤岩的变形和渗透率有重大影响,煤岩渗透率的变化与煤岩的变形损伤演化过程密切相关。卸围压后,含瓦斯煤岩的泊松比立即转为向变大的方向发展,变形模量立即转为向变小的方向发展,并在卸围压过程中发展的趋势保持不变。  相似文献   

3.
煤岩体是一种多孔介质,地下开挖使岩体的应力状态发生改变,导致岩体的力学性质和渗透性质发生改变,围岩应力状态和渗流场特性是获取储层瓦斯气、评价或计算矿井涌水量、防突水危害等具体工程问题的理论基础和科学依据。通过对淮南矿区煤岩进行三轴压缩全过程渗透性试验,分析了煤岩变形破坏全过程以及不同围压和瓦斯压力下的瓦斯渗透特性。得出煤岩全应力—应变曲线与煤岩瓦斯渗透率—全应力应变曲线之间的对应关系。结果表明:在微型裂隙闭合和弹性变形阶段,煤样渗透率随应力增大而减小,进入屈服阶段后,渗透率达到最小值并在峰值后呈持续增大之势;固定瓦斯压力作用下,煤样应力峰值随着围压的增加而逐渐增大,煤样渗透性与围压关系呈指数函数变化规律,且表现出应变滞后的特点;固定围压作用下,渗透率与瓦斯压力关系呈“V”字型走势,即在扩容阶段煤岩样渗透性达到最佳。  相似文献   

4.
利用自制含瓦斯煤热流固耦合三轴伺服渗流实验装置,对煤岩在不同轴压、围压和瓦斯压力组合下进行渗流试验,研究不同围压和瓦斯压力组合下的全应力-应变及在不同应力组合下煤岩渗透性的影响规律。结果表明:煤岩的渗透率随体积应力变化有三个阶段;在轴压和瓦斯压力一定的条件下,渗透率随着围压的增加而减小,且与围压呈二次曲线关系,围压对渗透率的影响比轴压大;在轴压和围压一定的条件下,渗透率随着瓦斯压力的增加先减小后增大,且与瓦斯压力呈三次曲线关系,渗透率减小阶段滑脱效应占主导地位;在一定瓦斯压力和相同体积应力下,渗透率随轴压  相似文献   

5.
煤岩固液耦合应变-渗透率试验   总被引:6,自引:0,他引:6       下载免费PDF全文
杨永杰  楚俊  郇冬至  李磊 《煤炭学报》2008,33(7):760-764
采用MTS815岩石伺服试验系统进行了煤样全应力应变过程中的渗透性试验.试验结果表明,煤岩的应变-渗透率变化曲线与其全应力-应变曲线变化趋势基本一致,但表现出相对“滞后”的特点,表明渗透率的变化与其损伤演化过程密切相关,同时煤体通过其内部裂隙的渗透需要一定的时间过程,煤岩体达到峰值强度及之后的软化阶段,即损伤变量达一定值时,渗透率出现峰值.根据试验结果,拟合得出了煤岩应变-渗透率分段曲线方程.由于煤岩微孔隙裂隙相对较发育,其渗透率受有效围压的影响较明显,随有效围压增大,煤岩渗透率总体上呈下降趋势,这主要与煤岩中发育的原生裂隙受围压压密闭合以及限制了新生裂隙的扩展和张开度有关.  相似文献   

6.
不同应力组合条件下煤岩渗透率的试验   总被引:2,自引:0,他引:2  
利用自制含瓦斯煤热流固耦合三轴伺服渗流实验装置,对煤岩在不同轴压、围压和瓦斯压力组合下进行渗流试验,研究不同围压和瓦斯压力组合下的全应力-应变及在不同应力组合下煤岩渗透性的影响规律。结果表明:煤岩的渗透率随体积应力变化有三个阶段;在轴压和瓦斯压力一定的条件下,渗透率随着围压的增加而减小,且与围压呈二次曲线关系,围压对渗透率的影响比轴压大;在轴压和围压一定的条件下,渗透率随着瓦斯压力的增加先减小后增大,且与瓦斯压力呈三次曲线关系,渗透率减小阶段滑脱效应占主导地位;在一定瓦斯压力和相同体积应力下,渗透率随轴压的增加而增大,随围压的增加而减小,而且呈线性规律。  相似文献   

7.
砂岩全应力-应变过程气体渗透特性实验   总被引:5,自引:0,他引:5       下载免费PDF全文
张宏敏 《煤炭学报》2009,34(8):1063-1066
以CO2气体为介质,运用自制含气岩石力学试验系统对平顶山煤业集团一矿砂岩全应力-应变过程中的气体渗透特性、围压对砂岩渗透特性的影响进行了实验研究.试验结果表明:全应力-应变过程中砂岩渗透率变化具有明显的阶段性,且应变滞后性明显;峰后砂岩渗透率明显大于其起始渗透率;随着围压的增加,相同应变下砂岩试件的渗透率呈减小趋势,砂岩渗透率的变化率也趋于减小.  相似文献   

8.
加卸载条件下煤岩变形特性与渗透特征的试验研究   总被引:4,自引:0,他引:4       下载免费PDF全文
许江  李波波  周婷  刘东  程立朝  曹偈 《煤炭学报》2012,37(9):1493-1498
以原煤为研究对象,利用自主研制的含瓦斯煤热流固耦合三轴伺服渗流试验系统,采用加轴压、卸围压的应力控制方式开展煤岩加卸载试验,分析加卸载条件下煤岩变形特性和渗透特征的演化规律。研究结果表明:① 加卸载试验峰值强度明显低于常规三轴压缩试验峰值强度,在加卸载过程中,主应力差有一个明显增加趋势,卸载第2阶段速率越大,其曲线斜率也越大,但峰值强度越小,对应的径向应变ε3 、体积应变εV增加速率也越快,而到峰值后破坏阶段,均呈下降趋势。② 加卸载过程中,煤岩渗透率、应力差与应变关系可以分为3个阶段,初始压密和屈服阶段、屈服后阶段、破坏失稳阶段。试件达到峰值后瓦斯渗透率出现突然小幅度上升,持续一段时间后,渗透率出现急剧陡增趋势。③ 煤岩渗透率的变化与煤岩的变形损伤演化过程密切相关,渗透率随变形的增大均呈二次多项式函数递增。  相似文献   

9.
采用MTS815.02型岩石伺服试验系统对煤样进行了应力应变全过程渗透性试验,得到不同围压下煤样的全应力-应变曲线,探讨了全应力-应变过程中煤样渗透率-应变关系曲线的几何特性,研究了煤样变形和破坏过程中的轴向应变与渗透率之间的关系,分析围压对煤样渗透率变化的影响。结果表明,轴向应力对Darcy流渗透特性和非Darcy流渗透特性的影响是同步的,煤样渗透率的峰值滞后于应力应变峰值;随着围压增大,煤样的渗透率总体上呈下降趋势。  相似文献   

10.
魏建平  王登科  位乐 《煤炭学报》2013,38(Z1):93-99
利用自主研发的含瓦斯煤岩三轴压缩实验系统,进行了受载含瓦斯煤的渗透特性实验,对比分析了受载含瓦斯型煤与原煤两种典型煤样的渗透特性之间的异同。研究结果表明,控制煤体渗透率大小的直接原因是有效孔隙度而非总孔隙度,有效孔隙度大,则渗透率大。在恒定瓦斯压力条件下,型煤与原煤的渗透率随围压的增大而减小,均服从负指数函数变化规律;相同实验条件下,型煤渗透率普遍远大于原煤渗透率,且型煤渗透率随围压下降的速度比原煤的快。在恒定围压条件下,型煤与原煤的渗透率呈现先减小后增加的趋势,在瓦斯压力p<1.0 MPa范围内均具有明显的Klinkenberg效应。全应力-应变条件下,瓦斯渗流规律与煤样的破坏形式相关,煤样渗透率都表现出先减小后增大的现象,并且具有一般的“V”字型变化规律。  相似文献   

11.
烧变岩石伺服条件下渗透特性试验研究   总被引:1,自引:0,他引:1  
烧变岩是煤层自燃引起周围围岩变质而形成的,具有特殊的工程地质性质。通过伺服渗透试验所获得的应力-应变关系与渗透率-应变关系,分析了全应力-应变过程中烧变岩石渗透性随变形的变化特点,揭示了不同原岩性质的烧变岩石渗透率-应变关系的主要差异和渗透率-应力之间的关联性,最后阐述了烧变岩石变形过程渗透性特征参数的工程意义。  相似文献   

12.
不同瓦斯压力原煤全应力应变过程中渗透特性研究   总被引:6,自引:0,他引:6       下载免费PDF全文
煤炭地下开采过程中,常会遇到不同瓦斯赋存压力和三维受力状态等复杂条件下的煤岩体瓦斯渗透问题,为系统探究其瓦斯渗透规律,利用改进的MTS815 Flex Test GT岩石力学试验系统,开展了原煤三轴压缩全过程渗透试验,对不同瓦斯压力原煤三轴压缩全过程中渗透特性进行了探讨,分析了煤岩变形破坏过程中其瓦斯渗透特性,以及不同瓦斯压力下煤岩的瓦斯渗透特性。结果表明:煤岩瓦斯渗透率-应变曲线与煤岩三轴压缩全应力-应变曲线具有很好的对应关系,其瓦斯渗透率随加载变形破坏呈先减小后增大趋势,在峰前70%~85%应力水平时达到最小值,煤岩瓦斯渗透率在应力峰值附近时均有不同程度的急剧上升;另一方面,煤岩瓦斯渗透率和瓦斯流量随瓦斯压力的升高呈先增加后减小的趋势,瓦斯压力为1 MPa时达到最大值,在1~3 MPa时,煤岩具有较好的渗透能力,针对现场实际情况,通过类似分析,设定合理的抽采负压区间,从而保证煤与瓦斯共采安全高效进行。  相似文献   

13.
煤岩变形力学特性及其对渗透性的控制   总被引:2,自引:0,他引:2  
通过煤岩力学试验研究了煤岩物理力学性质和煤岩全应力-应变过程中的渗透规律。研究结果表明:煤的力学强度相对煤层顶底板岩石具有低强度、低弹性模量和高泊松比特性,易于产生塑性变形;在全应力-应变过程中具有明显应变软化现象的煤样,在微裂隙闭合和弹性变形阶段,煤岩体积被压缩,煤岩渗透率随应力的增大而略有降低或渗透率变化不大;在煤岩的弹性极限后,随着应力的增加,煤岩进入裂纹扩展阶段,煤岩体积应变由压缩转为膨胀,煤岩渗透率先是缓慢增加然后随着裂隙的扩展而急剧增大;在煤岩峰值强度后的应变软化阶段煤岩渗透率达到极大值,然后均急剧降低,峰后煤岩的渗透率普遍大于峰前。在全应力-应变过程中应变软化现象不明显或者具有应变硬化现象的煤样,煤岩全应力-应变过程中最大渗透率主要发生峰值前的塑性变形阶段,在煤岩峰值强度后的应变硬化阶段,随着煤岩应力的增大,煤岩渗透率减小,峰后煤岩的渗透率普遍小于峰前。  相似文献   

14.
江东辉  孙强  朱术云  杨秀元 《金属矿山》2012,41(2):22-24,44
根据岩石渗透率变化与岩石破坏过程的对应关系,分析了全应力-应变过程中岩石渗透性能随应变的变化特点及渗透率-应变和渗透率-应力之间的关联性。研究表明岩石渗透率增长起始点与岩石的膨胀点近似对应,随全应力-应变过程的渗透率可划分为3个变化区间:压密区间、峰前屈服区间、峰后区间。岩石破坏过程变化主要是由尺度等级较小的微破裂的相互作用和生长最终形成主干断裂,进而形成贯通性的渗透通道。同时通过试验数据验证了分析的合理性。  相似文献   

15.
不同含水状态下含瓦斯原煤加卸载试验研究   总被引:6,自引:0,他引:6       下载免费PDF全文
以南川宏能煤业(原半溪矿)矿井西翼K1煤层为研究对象,利用自主研制的含瓦斯煤热流固耦合三轴伺服渗流实验装置,进行了不同含水状态下的含瓦斯煤加卸载试验研究。研究结果表明:(1)随含水率增加,加卸载煤样的承载强度、残余强度、变形模量都呈现降低趋势,而轴向应变、径向应变、体积应变及侧向膨胀率均呈增加趋势。(2)加卸载过程中煤样甲烷有效渗透率变化与煤样损伤变形演化相对应,但存在明显的滞后现象;煤样破坏前,含水率越高,甲烷有效渗透率越小;煤样破坏后,含水率越高,甲烷有效渗透率反而越大。(3)随含水率增加,加卸载煤样破坏程度增大,裂隙发育增多,形变量增大,煤样加卸载过程中的总能量和耗散能也增加,而弹性能却减小。  相似文献   

16.
松软低透气性煤层水力压裂技术研究   总被引:2,自引:2,他引:0  
针对新安煤矿二1煤层松软低透气性的特点,为增强煤层透气性,提高抽采效率,降低突出危险性,研究了水力压裂技术在松软低透气性煤层中的消突工艺及应用效果。研究表明,实施水力压裂后,煤层透气性显著增加,抽采瓦斯浓度增大105倍,抽采瓦斯流量增大86~204倍,瓦斯的抽采浓度和流量曲线呈现"升-降-升-稳定"的趋势,且稳定抽采持续时间长。  相似文献   

17.
针对冲击发生后瓦斯异常涌出的现象,分析了煤岩微裂隙状态、温度等因素在冲击地压发生前后的变化以及冲击地压引起矿体震动对瓦斯吸附能力的影响,从多角度分析了冲击地压发生后导致瓦斯异常涌出的条件和原因。通过理论计算,瓦斯渗透试验等手段,研究了煤体受载过程中孔隙度和渗透性的变化规律;在含气煤本构方程的基础上,利用三轴加载条件下应力-渗透率关系计算得到了煤样加载过程中的渗透率的变化曲线。结果表明:冲击地压的发生确实存在导致瓦斯异常涌出的条件,而瓦斯对煤体存在力学和非力学的作用,可以导致煤体强度下降,脆性增强,并能够加速煤体的失稳破坏;煤体孔隙度和渗透率在三轴加载条件下会有先降低后增大的趋势,在应力达到破坏载荷的70%左右时,孔隙度和渗透率急剧增长;煤岩体内裂纹扩展,渗透性能增加是高瓦斯矿井冲击地压发生后瓦斯大量涌出的最直接的原因,矿体震动、煤岩体温度升高等冲击地压的伴生现象在一定程度上会促进瓦斯解吸和逸出。  相似文献   

18.
提高煤岩渗透性的酸化处理室内研究   总被引:2,自引:0,他引:2       下载免费PDF全文
李瑞  王坤  王于健 《煤炭学报》2014,39(5):913-917
对沁水盆地南部晋城矿区3号煤储层井下观察研究后,采集了含有方解石脉的煤岩样品,实验室条件下钻取了?25 mm的煤岩芯,利用两种不同的酸液体系对其进行了酸处理,并对酸化前后煤岩芯的渗透率、孔隙度及孔隙结构进行了测试和分析。结果显示,用盐酸对煤岩芯进行处理后,煤岩芯渗透率由原来的不足10-15m2增加到了20×10-15m2左右,孔隙度增加了4.654%,酸化主要通过改造1μm前后的孔、裂隙系统来提高煤渗透性。在此基础上,提出了对煤储层进行酸化处理在我国煤层气钻完井和增产改造中的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号