首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
纯工质水平管内凝结换热研究进展   总被引:2,自引:0,他引:2  
相对于混合工质,纯工质(单一成分制冷剂)不存在温度滑移、系统泄漏时的成分变化等问题,在制冷设备中得到了广泛应用.研究纯工质水平管内凝结换热特性对其及其混合物在制冷、空调、热泵方面的应用具有重要意义.文章从理论和实验两个方面,综述了国外对纯工质在水平管内流动凝结换热的研究,分析了凝结换热关联式的适用性和局限性,并提出了进一步研究的建议.  相似文献   

2.
本文提出了计算非共沸混合工质水平管内在环状流和波状分层流型下凝结换热系数的折算方法。推导出了折算因子的准则式,对影响非共沸工质凝结换热的主要因素作了分析。  相似文献   

3.
本文报导了国产新制冷剂工质HFC-134a及其所替代的工质CFC-12在水平光管内凝结换热的实验结果。实验管内径为6mm,管长为5m。实验结果表明,在相同的凝结温度和工质质量流量的条件下,国产HFC-134a的凝结换热系数比CFC-12大30%左右,而两者压力降数值基本相同。文中同时给出了计算这两种工质凝结换热过程中局部换热系数、平均换热系数和压力降的计算公式。  相似文献   

4.
R22和R417A在水平强化管外的凝结换热实验研究   总被引:4,自引:0,他引:4  
用实验的方法研究了非共沸工质R417A在水平强化换热管管外的凝结换热性能,并与R22做了对比.试验管为两种强化换热管-斜翅管和矩翅管.结果表明:对于斜翅管,同等的壁面过冷度下,R417A的凝结换热系数大于R22的管外换热系数;对于矩翅管,同等的壁面过冷度下,R22的凝结换热系数大于R417A的凝结换热系数;在工质R417A下,两种强化管的凝结管外换热系数随壁面过冷度的变化率都比R22大,其原因应该与R417A作为一种非共沸制冷剂的温度滑移特性有关.从强化换热的角度考虑,对于表面张力较小的工质,选用斜翅管更有利.  相似文献   

5.
具有不凝结气体存在的凝结换热研究   总被引:1,自引:0,他引:1  
介绍了不凝结气体对凝结换热的影响,提出了在自行复叠制冷系统中消除不凝结气体对凝结换热的影响的一种新方法,然后进行了有不凝性气体存在时的换热系数的计算及相关的试验研究。试验结果证明了新的方法使得自行复叠制冷系统中有不凝性气体存在时的凝结换热大大加强,换热系数已经接近或达到纯工质在相同状况下的换热系数。  相似文献   

6.
实验研究了近共沸制冷工质R404A与非共沸制冷工质R407C在水平强化换热管管外的凝结换热性能。采用"Wilson图解法"对实验数据进行处理。结果表明:对于R404A和R407C,强化管外的凝结换热系数随着壁面过冷度的增加而增大,呈现出与纯工质冷凝时不同的变化趋势,这主要是近共沸或非共沸工质凝结过程中,某些组分的凝结会遇到其它组分的凝结气膜热阻所造成的;随着过冷度增加,易挥发组分开始凝结,气膜变薄,冷凝传热系数增大。R407C在强化换热管管外的凝结换热系数比R404A要小70%左右,这是由于R407C的温度滑移较R404A要大,管外形成的凝结扩散气膜造成的影响更大。R407C在高热流密度工况下的换热效果提升明显,故应尽量工作在高热流密度区域。  相似文献   

7.
替代工质水平管内流动凝结换热研究综述   总被引:1,自引:0,他引:1       下载免费PDF全文
流动凝结传热特性对于制冷系统的性能具有重要意义,是制冷剂筛选中的一个重要参考指标。针对近年来有关新型替代工质的凝结传热进行了调研分析,从实验测量和关联模型两个方面综述了国内外替代制冷剂管内流动凝结换热的研究。对凝结换热关联式的适用性和准确性进行了讨论,对凝结换热系数和压降随各影响因素的变化特性进行了概括。  相似文献   

8.
比较了CAVALLINI的纯质和混合工质水平内螺纹管中流动沸腾换热系数的关联式,结果显示在内螺纹管中,对近共沸混合工质R404A的沸腾换热系数进行工程计算时,R404A被看作纯质和混合工质计算所得的沸腾换热系数值差别最大不到10%,因此可将其以纯质对待;对CAVALLINI的纯质和混合工质、KOYAMA及THOME等四个水平内螺纹管流动沸腾换热系数的影响因素进行对比分析,结果表明R404A的沸腾换热中对流沸腾换热占主导地位,且随干度增加而增加.对关联式的理论预测和实验结果进行对比,表明CAVALLINI和THOME关联式的预测误差小于21%,因此它们对R404A适用性较好,这对R404A蒸发器的工程设计及优化具有一定参考意义.  相似文献   

9.
为了揭示非共沸混合工质在冷凝器内的换热特性,探明非共沸混合工质组分对制冷剂和换热流体间沿程温度的影响,通过建立冷凝器换热模型,对不同沸点差的二元环保型非共沸混合工质进行了理论分析.结果表明:由于非共沸混合工质比焓值与温度的非线性关系,换热流体间的沿程传热温差出现极值点;混合工质中富含低沸点组分时,冷凝器内部存在最小传热温差;反之,存在最大传热温差;混合工质沸点差增加,滑移温度的限制条件之差增大,窄点现象增强.  相似文献   

10.
逆流换热器是多元混合工质低温节流制冷机中最为关键的部件之一,本文针对多元低温混合工质节流制冷机经常采用的管套管式逆流换热器进行实验研究,得出了采用不同工质下的换热器温度、压力沿程分布情况,并进一步得到了混合工质逆流换热器的整机换热系数,实验中各条件都是真实制冷机的典型运行工况,实验结果加深了我们对采用多元混合工质在具有相变传热情况下的工作特性的了解,对今后制冷机换热器的设计具有很大的帮助。  相似文献   

11.
This study presents a prediction model for the condensation heat transfer characteristics of binary zeotropic refrigerant mixtures inside horizontal smooth tubes. In this model, both the vapor-side and liquid-side mass transfers are considered, and the high flux mass transfer correction factor is used to evaluate mass transfer coefficients. The model was applied to the binary zeotropic refrigerant mixture R134a/R123, which has a large temperature glide. Calculation results showed that the heat transfer degradation of R134a/R123 due to gradients in the mass fraction and temperature is considerable, and depends on the mass fraction of the more volatile component and the vapor mass quality of the refrigerant mixture. By comparison with experimental data, incorporating the present finite mass transfer model for the liquid film side into the calculation algorithm was shown to reasonably well predict the condensation heat transfer coefficients of binary refrigerant mixtures with the mean deviation of about 10.3%. In the present calculations, however, it was also found that the high flux mass transfer correction factor had only a slight effect on the condensation heat transfer.  相似文献   

12.
混合制冷工质在管束外的冷凝传热强化研究   总被引:1,自引:0,他引:1  
研究了非共沸混合制冷工质R142b/R134a和R22/R152a/R124在花瓣形翅片管管束外冷凝传热性能,实验结果表明花瓣形翅片管能显著地强化非共沸混合制冷工质的冷凝传热。  相似文献   

13.
The recuperative heat exchanger governs the overall performance of the mixed refrigerant Joule–Thomson cryocooler. In these heat exchangers, the non-azeotropic refrigerant mixture of nitrogen–hydrocarbons undergoes boiling and condensation simultaneously at cryogenic temperature. Hence, the design of such heat exchanger is crucial. However, due to lack of empirical correlations to predict two-phase heat transfer coefficients of multi-component mixtures at low temperature, the design of such heat exchanger is difficult.The present study aims to assess the existing methods for prediction of flow boiling heat transfer coefficients. Many correlations are evaluated against available experimental data of flow boiling of refrigerant mixtures. Silver-Bell-Ghaly correlation and Granryd correlation are found to be more suitable to estimate local heat transfer coefficients. A modified Granryd correlation is recommended for further use.  相似文献   

14.
The paper reports the results of condensation heat transfer and pressure drop from tests with pure and oil-contaminated refrigerant HFC134a in a horizontal tube (10 m in length, 6 mm ID). The experimental results are compared with prediction from correlation. The heat transfer coefficient in the case of oil-contaminated refrigerant is shown to depend strongly on the definition of the saturation temperature. Using the pure refrigerant saturation temperature (hence disregarding the influence of oil on the vapour pressure), the results for average heat transfer coefficient show only minor effect of the oil contents. If the saturation temperature of the refrigerant—oil mixture is used, there is thus a significant degradation of the heat transfer coefficient (as expected) with increasing oil concentrations.  相似文献   

15.
This paper presents a comparative study of the condensation heat transfer coefficients in a smooth tube when operating with pure refrigerant R134a and its mixture with lubricant Castrol “icematic sw”. The lubricant is synthetic polyol ester based oil commonly used in lubricating the compressors. Two concentrations of R134a-oil mixtures of 2% and 5% oil (by mass) were analysed for a range of saturation temperatures of refrigerant R134a between 35 °C and 45 °C. The mass flow rate of the refrigerant and the mixtures was carefully maintained at 1 g/s, with a vapour quality varying between 1.0 and 0. The effects of vapour quality, flow rate, saturation temperature and temperature difference between saturation and tube wall on the heat transfer coefficient are investigated by analysing the experimental data. The experimental results were then compared with predictions from earlier models [Int J Heat Mass Transfer (1979), 185; 6th Int Heat Transfer Congress 3 (1974) 309; Int J Refrig 18 (1995) 524; Trans ASME 120 (1998) 193]. Finally two new empirical models were developed to predict the two-phase condensation heat transfer coefficient for pure refrigerant R134a and a mixture of refrigerant R134a with Castrol “icematic sw”.  相似文献   

16.
Experiments were conducted to obtain row-by-row heat and mass transfer data during condensation of downward-flowing zeotropic mixture R123/R134a in a staggered bundle of horizontal low-finned tubes. The vapor temperature and the mass fraction of R134a at the tube bundle inlet were about 50°C and 14%, respectively. The refrigerant mass velocity ranged from 9 to 34 kg m−2 s−1, and the condensation temperature difference from 1.9 to 12 K. Four kinds of low-finned tubes with different fin geometry were tested. The highest heat transfer coefficient was obtained with a tube which showed the highest performance for R123. However, the diference among the tubes was much smaller for the mixture than for R123. The heat transfer coefficient and the vapor-phase mass transfer coefficient decreased significantly with decreasing mass velocity. The mass transfer coefficient increased with condensation temperature difference, which was due to the effect of suction associated with condensation. On the basis of the analogy between heat and mass transfer, a dimensionless correlation of the mass transfer coefficient was developed for each tube.  相似文献   

17.
Mixed refrigerant Joule Thomson refrigerators are widely used in various kinds of cryogenic systems these days. Although heat transfer coefficient estimation for a multi-phase and multi-component fluid in the cryogenic temperature range is necessarily required in the heat exchanger design of mixed refrigerant Joule Thomson refrigerators, it has been rarely discussed so far. In this paper, condensation and evaporation heat transfer coefficients of argon–freon mixed refrigerant are measured in a microchannel heat exchanger. A Printed Circuit Heat Exchanger (PCHE) with 340 μm hydraulic diameter has been developed as a compact microchannel heat exchanger and utilized in the experiment. Several two-phase heat transfer coefficient correlations are examined to discuss the experimental measurement results. The result of this paper shows that cryogenic two-phase mixed refrigerant heat transfer coefficients can be estimated by conventional two-phase heat transfer coefficient correlations.  相似文献   

18.
Although ammonia has been used for decades as a refrigerant of choice for selected large- and small-scale applications, no formal database is available on heat transfer of ammonia. A critical review of the published literature on heat transfer of ammonia is provided in this paper. The available correlations for in-tube and external boiling/evaporation and condensation heat transfer of ammonia are discussed and evaluated where possible. Supported by the findings of this effort, research areas of relevance that can contribute to expanded use of ammonia as an environmentally friendly refrigerant are suggested.  相似文献   

19.
This paper presents the experimental tests on HFC-134a condensation inside a small brazed plate heat exchanger: the effects of refrigerant mass flux, saturation temperature and vapour super-heating are investigated.A transition point between gravity controlled and forced convection condensation has been found for a refrigerant mass flux around 20 kg/m2 s. For refrigerant mass flux lower than 20 kg/m2 s, the saturated vapour heat transfer coefficients are not dependent on mass flux and are well predicted by the Nusselt [Nusselt, W., 1916. Die oberflachenkondensation des wasserdampfes. Z. Ver. Dt. Ing. 60, 541–546, 569–575] analysis for vertical surface. For refrigerant mass flux higher than 20 kg/m2 s, the saturated vapour heat transfer coefficients depend on mass flux and are well predicted by the Akers et al. [Akers, W.W., Deans, H.A., Crosser, O.K., 1959. Condensing heat transfer within horizontal tubes. Chem. Eng. Prog. Symp. Ser. 55, 171–176] equation. In the forced convection condensation region, the heat transfer coefficients show a 30% increase for a doubling of the refrigerant mass flux. The condensation heat transfer coefficients of super-heated vapour are 8–10% higher than those of saturated vapour and are well predicted by the Webb [Webb, R.L., 1998. Convective condensation of superheated vapour. ASME J. Heat Transfer 120, 418–421] model. The heat transfer coefficients show weak sensitivity to saturation temperature. The frictional pressure drop shows a linear dependence on the kinetic energy per unit volume of the refrigerant flow and therefore a quadratic dependence on the refrigerant mass flux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号