首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The NEL of calcium salts of long-chain fatty acids from palm oil was determined in mature Holstein cows. Twelve lactating (fed for ad libitum intake) and six nonlactating (restricted to near maintenance intake) Holstein cows were fed 0 or 2.95% fat supplement in diets formulated to contain 16 or 20% CP in a 2 x 2 factorial arrangement of treatments in a single reversal design within protein level. The fat supplement was substituted for ground corn and minerals. Two 6-d total collection balance trials were conducted during which cows were in open circuit respiration chambers. Intake of OM was lower for lactating cows fed the fat supplement (18.1 vs. 19.1 kg/d), but energy intake did not differ (93.2 Mcal/d). Total long-chain fatty acid intake was increased from 477 to 820 g/d with fat feeding. Apparent digestibility of long-chain fatty acids was increased 11.1 percentage units with increased dietary CP for lactating cows with no difference in fatty acid digestibility for the dry cows. Milk yield was higher (34.3 vs. 32.0 kg/d) with fat feeding, but milk energy yield did not differ (22.6 Mcal/d). The NEL of the fat supplement was estimated from the incremental differences in energy values within cows, assuming NEL of corn replaced by fat to be 1.96 Mcal/kg DM, and was determined to be 6.52 Mcal/kg DM (SE = 1.74). The efficiency of the use of metabolizable energy for lactation from dietary fat was 77.2%. The energy in calcium salts of long-chain fatty acids is utilized efficiently for lactation in mature cows.  相似文献   

2.
Six ruminally and duodenally fistulated Holstein cows 60 d postpartum were assigned randomly to each of two treatments in a single reversal design. Treatments consisted of placebo or 25 mg of sometribove (bST) injected daily. Treatments were initiated at 60 d +/- 7 postpartum and maintained for 6 wk with a 3-wk adjustment between treatment periods. All cows received a TMR consisting of 16% CP and 1.67 Mcal of NE I/kg of DM. Influence of bST on rumen fermentation characteristics, digesta rate of passage, apparent nutrient digestibility, and milk production was evaluated. Milk yield of treated animals was 4.0 kg/d higher than controls. The 3.5% FCM and milk production efficiency (3.5% FCM/DMI) were significantly higher in treated animals than in controls (29.0 vs. 25.4 kg/d and 1.38 vs. 1.21 kg/kg, respectively). Percentage of rumen cellulolytic bacteria (of total viable bacteria) was not significantly different for bST-treated animals (6.4 vs. 3.4%). Total number of rumen protozoa tended to be higher (7.25 vs. 6.55 x 10(3)/ml) in bST-treated animals. Ruminal percentages of CP, NH3 N, alpha-amino N, VFA, and pH were unaffected by treatment. Sometribove treatment did not significantly affect liquid dilution or solids turnover rates. Percentages of CP, alpha-amino N, and NH3 N content in duodenal samples were unaffected by treatment. Total tract apparent digestibility of nutrients and mean daily DMI were unaffected by treatment.  相似文献   

3.
Feeding unsaturated dietary fat to lactating dairy cows receiving bST may effectively alter the fatty acid composition of milk fat. This was tested using 16 Holstein cows assigned to one of four treatments during midlactation. Treatments were control, control diet with 15.5 mg of bST/d per cow, dietary fat from sunflower seeds and bST, or dietary fat from safflower seeds and bST. Diets were formulated to contain 19% CP and contained 25% corn silage, 25% alfalfa hay, and 50% concentrate mix on a DM basis. Milk yield was not significantly higher when bST was administered and increased with added fat diets (29.5, 32.7, 40.0, and 34.1 kg/d for the control, control with bST, sunflower seed with bST, and safflower seed with bST treatments, respectively). Percentage of milk fat was similar for all treatments. Concentrations of long-chain and unsaturated fatty acids in milk were increased slightly by bST and substantially with added fat. Milk protein percentages were not influenced by bST but were reduced by approximately .2 unit with added fat. Added unsaturated dietary fat coupled with bST increased milk yield and produced a greater concentration of unsaturated fatty acids in milk.  相似文献   

4.
Response of lactating dairy cows to fat supplementation during heat stress.   总被引:4,自引:0,他引:4  
Effects of supplemental prilled long-chain fatty acids on lactation performance during heat stress were examined using eight multiparous Holstein cows in a replicated 4 x 4 Latin square design with 15-d periods. Cows were ruminally cannulated and were assigned randomly to one of four treatments in a 2 x 2 factorial arrangement of treatments. Factors were 0 or 5% supplemental fat and thermoneutral or heat stress conditions. Cows were housed in environmental chambers with thermoneutral conditions of 20.5 degrees C and 38% relative humidity for 24 h/d or heat stress conditions of 31.8 degrees C and 56% relative humidity for 14 h/d and 25.9 degrees C with 56% relative humidity for 10 h/d. Isonitrogenous diets (17% CP) containing 50% alfalfa silage and 50% concentrate were offered for ad libitum intake. Diets contained 1.64 or 1.83 Mcal NEL/kg DM. No diet by environment interactions were significant. Milk fat percentage (3.46 vs. 3.15%) and 3.5% FCM (31.5 vs. 29.2 kg/d) were higher for cows fed 5 vs. 0% fat. Dry matter intake, milk yield, and milk protein percentage did not differ between diets. Heat stress decreased DMI, milk yield, 3.5% FCM, and milk protein percentage but did not affect milk fat percentage. Results suggest that supplemental fat at 5% of diet DM enhances lactation performance similarly under thermoneutral and heat stress conditions.  相似文献   

5.
To determine if increased nutrient density in prepartum diets improves nutrient balance of peripartum cows, we blocked 40 Holstein cows and 40 heifers by expected date of parturition and assigned them randomly within blocks to one of four treatment diets varying in density of net energy for lactation (NEL) and crude protein (CP). Diets were 1.30 Mcal of NEL/kg and 12.2% CP, 1.49 Mcal of NEL/kg and 14.2% CP, 1.61 Mcal of NEL/kg and 15.9% CP, and 1.48 Mcal of NEL/kg and 16.2% CP. These diets were fed ad libitum from 25 d prepartum until parturition, and all cows were fed the same diet after calving. Increased nutrient-density of prepartum diets did not decrease feed intake. Compared to animals fed the lowest density, those fed the highest density consumed more NEL (20 vs. 14 Mcal/d) and gained more body condition, backfat, and body weight. They also had less nonesterified fatty acids in plasma (176 vs. 233 microM) and more insulin-like growth factor-I in plasma (472 vs. 390 ng/ml) during the last 2 wk prepartum and less triglyceride in liver at parturition (0.9 vs. 1.5%, wet tissue basis). Quadratic effects of energy density were not observed, and the addition of protein in the medium energy diet had no effect. Prepartum diets did not alter any variables during lactation. In conclusion, increasing the energy and protein density up to 1.6 Mcal of NEL/kg and 16% CP in diets during the last month before parturition improves nutrient balance of cattle prepartum and decreases hepatic lipid content at parturition.  相似文献   

6.
Thirty-nine multiparous cows obtained from two genetic lines were utilized to determine the effect of genetic merit on lactation response to long-term administration of recombinant bST. Cow index ranged from -70 to 456 (mean = 183) and -494 to -88 (mean = -288) kg milk for high and low genetic groups, respectively. Cows were blocked by calving date and randomly assigned to treatment within genetic group. Treatments were 0, 10.3, 20.6, and 30.9 mg somatotropin injected daily from wk 14 through 44 postpartum. Cows were fed one of two total mixed rations. Diet 1 (NE1 = 1.65 Mcal/kg, CP = 18%, and ADF = 22%) was fed from start of lactation to at least 4 wk after initiation of treatment. Cows were switched to diet 2 (NE1 = 1.56 Mcal/kg, CP = 16%, and ADF = 27%) when milk output fell below 25 kg/d. Forty-four week lactation yields were 9800 and 9447 kg milk; 364 and 354 kg fat; and 322 and 309 kg protein for high and low genetic groups, respectively. Milk, milk fat, or protein yield due to somatotropin did not differ between genetic groups. Increasing dosage of bST increased milk, 4% FCM, fat, and protein yields in a linear fashion. Percentages of fat and protein of milk were similar for all treatment groups. Body weight changes were not significantly different among treatments, but condition score changes decreased linearly with increasing dose of bST. Long-term treatment with recombinant bST had no apparent effect on incidence of health problems or reproduction.  相似文献   

7.
Twelve multiparous Holstein cows calving in fall and 12 calving in summer were blocked into four groups and used in a 2 x 2 x 2 factorial to determine the effects of season of calving, dietary fat, and protein degradability on milk production and efficiency of NEL utilization in a 16-wk study. Blocks were assigned randomly to one of four dietary treatment combinations: 1) control concentrate plus soybean meal (high degradability protein supplement); 2) control concentrate plus a mixture of heated soybean meal and corn gluten meal (low degradability protein supplement); 3) a blend of the control concentrate and a concentrate containing 12.1% fat to provide 1 kg d-1 fat, plus soybean meal; and 4) concentrate as in diet 3 plus heated soybean meal and corn gluten meal. Nutrient intake, milk yield and composition, BW changes, and daily ambient temperature were monitored. Intake of DM appeared to be related to NDF intake but was not affected by fat, protein degradability, or calving season. Intake of NEL was increased by feeding fat. Digestabilities of DM and CP were increased and fiber was decreased by feeding fat. Percentage and yields of milk fat, SNF, and protein and 4% FCM production were higher in cows calving in fall. Milk fat percentage was low in all cows in the study. Efficiency of energy utilization for milk production was decreased in cows fed fat and calving in the summer and by low protein degradability during wk 5 to 8 of lactation. At high concentrate intake, calving season had more effect on milk production than level of fat or protein degradability.  相似文献   

8.
The objective of this study was to evaluate the response of Holstein cows to bovine somatotropin (bST) during advanced lactation and its relationship to energy intake. Twenty-four lactating Holstein cows averaging 21 kg of milk/d, and 292 d in milk were assigned to one of three treatment groups in a randomized block design. Blocks were based on the 14 d of pretreatment milk production, and treatment groups were balanced for days in milk. Treatment 1 was a low-energy diet (1.49 Mcal/kg of dry matter) without bST injection; treatment 2 was the low-energy diet plus injection of 500 mg of bST every 14 d; and treatment 3 was a high-energy diet (1.71 Mcal/kg of dry matter) with bST injections as in treatment 2. Treatment was divided into two periods (1 to 49 and 50 to 98 d) to determine if response to bST and energy changed with time on treatment. Results showed that bST significantly (P < 0.05) increased milk, fat-corrected milk, and fat and protein yields; and feed efficiency (fat-corrected milk per dry matter intake) for both periods. Milk yield responses to bST were greater for cows fed the low-than the high-energy diet in both periods. These data show that bST injections for cows in advanced lactation increased performance, but excessive energy diminished the bST response.  相似文献   

9.
Multiparous cows (n = 59) were blocked by expected calving date and previous milk yield and assigned randomly to treatments to determine the effects of bovine somatotropin (bST; Posilac, Monsanto Animal Agricultural Group, St. Louis, MO) and source of dietary fat on production responses. Diets were provided from calving and included whole, high-oil sunflower seeds [SS; 10% of dietary dry matter (DM); n-6:n-3 ratio of 4.6] as a source of linoleic acid (18:2) or a mixture of Alifet-High Energy and Alifet-Repro (AF; Alifet USA, Cincinnati, OH; 3.5 and 1.5% of dietary DM, respectively; n-6/n-3 ratio of 2.6) as a source of protected n-3 fatty acids. Diets contained 181 versus 188 g of crude protein and 183 versus 186 g of acid detergent fiber/kg of DM and 1.54 versus 1.66 Mcal of net energy for lactation at the actual DM intake for SS versus AF, respectively. Cows received 0 or 500 mg of bST every 10 d from 12 to 70 d in milk (DIM) and at 14-d intervals through 280 DIM. The 2 × 2 factorial combination of diet (SS or AF) with or without bST administration resulted in treatments designated as SSY, SSN, AFY, and AFN, respectively. Data were analyzed as repeated measures using mixed model procedures to determine the effects of diet, bST, and their interactions. Yield of 3.5% fat-corrected milk was not altered by diet, but was increased by 4.0 ± 1.9 kg/d from 12 to 70 DIM and by 5.1 ± 1.2 kg/d from 12 to 280 DIM by bST. Treatment did not affect DM intake or energy balance (EB) nadir. There was an interaction of bST and diet on EB because AF decreased the impact of bST on overall EB and allowed AFY cows to reach a positive EB earlier than SSY cows. Gross feed efficiency adjusted for body weight change was greater for bST-treated cows (1.03 vs. 1.15 ± 0.03 kg of fat-corrected milk/Mcal of net energy for lactation). Circulating insulin-like growth factor-I concentrations were increased by bST (85 vs. 125 ± 8 ng/mL). Body weight, body condition score, and backfat thickness were reduced by bST, but differences between treated and nontreated cows did not differ by 280 DIM. Results indicate cows responded to bST administration in early lactation, but the magnitude of the response was greater after 70 DIM. Source of dietary fat had a minimal effect on most production measurements, but relative to SS, AF decreased the impact of bST on overall EB. Results support the premise that bST administration prolongs the delay in postpartum tissue replenishment.  相似文献   

10.
Forty-eight multiparous cows were blocked by calving date and milk production and assigned randomly to a TMR formulated to contain 68 or 55% of dietary CP as ruminally degradable CP. Diets contained corn silage, alfalfa haylage, and ground corn. Supplemental CP was soybean meal for the control diet or a combination of soybean meal, expeller-processed soybean meal, and fish meal for the low degradable protein diet. Two 10-wk phases began on d 31 +/- 3 (phase 1) and 110 +/- 7 postpartum [phase 2, all cows received subcutaneous implantations of pelleted (400 mg) bST (sometribove) every 14 d]. Dietary energy, CP, ruminally degradable CP, NDF, and ADF were similar between dietary treatments. Production of FCM increased in response to bST but was not affected by dietary treatment. Cows fed the expeller-processed soybean meal and fish meal TMR produced milk that contained less milk fat in phase 1 and less milk protein content in both phases. The DMI, BW, and body condition scores were not affected by diet. Hematocrit, plasma urea N, albumin, total protein, creatinine, glucose, and serum insulin were similar between dietary treatments. Replacing soybean meal with expeller processed soybean meal and fish meal did not affect ruminal degradation of protein or milk production but decreased milk fat and protein contents.  相似文献   

11.
The objective of this study was to determine the effects of feeding increased dietary crude protein (CP) on productive performance and indicators of protein and energy metabolism during 21 d postpartum. Thirty multiparous Holstein dairy cows were balanced by previous lactation milk yield, body condition score (BCS) at calving, and parity and randomly allocated to 1 of 3 dietary treatments from calving until 21 d postpartum. Dietary treatments were 16.0% CP with 5.0% rumen undegradable protein (RUP) based on dry matter (DM) (16CP), 18.7% CP with 7.0% RUP based on DM (19CP), and 21.4% CP with 9.0% RUP based on DM (21CP). Diets were similar in net energy for lactation (approximately 1.7 Mcal/kg of DM) and CP levels were increased with corn gluten meal and fish meal. Dry matter intake (DMI) was increased by increasing dietary CP levels from 16.0 to 19.0% of DM, but dietary CP beyond 19.0% had no effect on DMI. Milk yields were 4.7 and 6.5 kg/d greater in cows fed the 19CP and 21CP diets versus those fed the 16CP diet, whereas 4% fat-corrected milk was greater for cows fed the 21CP than the 16CP diet (36.0 vs. 31.4 kg/d). Milk protein content and yield, lactose yield, and milk urea nitrogen were elevated by increased dietary CP. Milk lactose content and fat yield were not different among dietary treatments, but milk fat content tended to decline with increasing content of CP in diets. High CP levels increased milk N secretion but decreased milk N efficiency. Apparent digestibility of DM, CP, and neutral detergent fiber was greater on the 19CP and 21CP diets compared with the 16CP diet. Cows fed the 19CP and 21CP diets lost less body condition relative to those fed the 16CP diet over 21 d postpartum. Feeding higher CP levels increased the concentrations of serum albumin, albumin to globulin ratio, and urea nitrogen and decreased aspartate aminotransferase, nonesterified fatty acids, and β-hydroxybutyrate, but had no effect on globulin, glucose, cholesterol, or triacylglycerol. These findings indicated that elevating dietary CP up to 19.0% of DM using RUP supplements improved DMI, productive performance and the indicators of protein and energy metabolism from calving to 21 d postpartum.  相似文献   

12.
Holstein cows (n = 58, 21 primiparous), fed corn and wilted grass silages (63:37, DM basis) for free choice consumption, were assigned to control concentrate or supplemented concentrate during wk 1 to 16 postpartum with linted whole cottonseed (15% of projected DMI) alone or with Megalac (.54 kg/d). Our objective was to examine the effects of fatty acids on energy and N balances, total tract digestibility, and milk fatty acids in wk 7 and 16 and to assess total lactation responses. During balance measurements, fatty acids constituted 4.1, 6.8, and 8.6% of DM in control, oilseed, and oilseed plus protected fatty acid diets. Fat additions reduced fiber digestion (attributed to oilseed) and, to some degree, DMI and milk yield, but enhanced fat test without affecting protein percentage. Supplementary fat increased the proportion of C18:0 in milk at the expense of short-chain fatty acids. Supplemental oilseed with or without protected fatty acids reduced total heat production by 6% and reduced heat in excess of maintenance by 8%. Best estimates of NEL in linted whole cottonseed and of fat in Megalac were 1.81 and 5.69 Mcal/kg of DM. In total lactation, primiparous cows yielded more milk and FCM when fed oilseed plus Megalac and less of each when fed oilseed alone than controls. In pluriparous cows, milk yield was reduced by 2.7 kg/d relative to other treatments when oilseed plus Megalac was fed; FCM yield increased about 2 kg/d only when oilseed was supplemented alone. Overall, data suggest that basal ration fat and oilseed supplementation were too high or that supplementation should have been delayed until feed intake was higher.  相似文献   

13.
Holstein cows (n = 72) entering second or later lactation were used to determine whether productive performance and dry matter intake (DMI) are affected by carbohydrate source in the prepartum diet and chromium-L-methionine (Cr-Met) supplementation throughout the periparturient period. Cows were fed either a TMR with the concentrate portion based on starch-based cereals [high nonfiber carbohydrate (NFC); 1.59 Mcal/kg of net energy for lactation (NEL), 14.4% crude protein (CP), 40.3% NFC] or a TMR with the concentrate portion based on nonforage fiber sources (low NFC; 1.54 Mcal/kg NEL, 14.5% CP, 33.6% NFC) from 21 d before expected parturition until parturition. After parturition all cows were fed a lactation TMR (1.74 Mcal/kg NEL, 16.5% CP, 40.0% NFC). The Cr-Met was supplemented once daily via gelatin capsule at dosages of 0, 0.03, or 0.06 mg of Cr/kg of metabolic body weight. Thus, treatments were in a 2 (carbohydrate source) x 3 (Cr-Met) factorial arrangement. Neither prepartum nor postpartum DMI was affected by prepartum dietary carbohydrate source. Administering increasing amounts of Cr-Met linearly increased milk yield and, subsequently, postpartum DMI. Prepartum carbohydrate source did not affect postpartum milk yield; however, cows fed the low NFC diet tended to yield milk with a lower content of total solids. These data indicate that prepartum carbohydrate source has little influence on performance during the immediate peripartal period, and that increases in milk yield for cows supplemented with Cr-Met are independent of prepartum dietary carbohydrate source.  相似文献   

14.
Primiparous (n = 105) and multiparous (n = 136) Holstein cows were used to evaluate efficacy of sometribove (n-methionyl bovine somatotropin, bST) in a dose titration study. Cows were fed TMR for ad libitum intake, were milked twice daily, and were allocated randomly within parity (1 vs. 2+) to treatments of 0, 250, 500, or 750 mg bST/14 d in a prolonged-release formulation. Subcutaneous injections commenced 60 +/- 3 d postpartum and continued throughout lactation. During a standardized treatment period of 252 d, treatment with increasing dosages of bST increased 3.5% FCM yield in a dose-dependent manner for both primiparous (2.5 kg/d, 10.2%; 3.5 kg/d, 14.3%; and 5.9 kg/d, 24.1%) and multiparous cows (3.1 kg/d, 12.1%; 3.9 kg/d, 15.2%; and 6.8 kg/d, 26.5%). Milk content of fat, protein, lactose, ash, Ca and P, and SCC were not affected by treatment. Over the 252-d treatment period, voluntary intake of energy was increased in bST-treated cows such that BW gain, body condition score, and net energy balance did not differ among treatment groups. Productive efficiency (milk per unit NEL intake corrected for BW change) over the treatment period was significantly increased in a dose-dependent manner for multiparous cows (4.1, 6.8, and 11.0%). Results demonstrated that bST administered in a prolonged-release formulation was efficacious in enhancing milk production and feed efficiency.  相似文献   

15.
To determine effects of rapid prepubertal growth on first-lactation milk production, Holstein heifers were randomly assigned to one of three treatments. Thirty-five heifers were fed a standard diet to meet NRC recommendations and produce 0.8 kg of body weight (BW) gain/d (standard). Thirty-five heifers were fed a diet with higher energy (2.8 Mcal of metabolizable energy/kg) and protein (19.7% crude protein; high diet) to produce 1.2 kg of BW gain/d (high). Thirty-five heifers were fed the high diet and injected daily with bovine somatotropin (bST) (25 microg/kg of BW; high-bST). Diets were fed and bST was injected from 135 kg of BW until pregnancy was confirmed. Heifers were inseminated after BW exceeded 363 kg. Pregnant heifers were commingled and fed similar diets through gestation, parturition, and lactation. High and high-bST heifers had greater prebreeding average BW gains than standard heifers. Conversely, standard heifers had a greater average BW gain during gestation than high and high-bST heifers. High and high-bST heifers were approximately 90 d younger than standard heifers at first insemination and first parturition. Postpartum BW, body condition scores, and withers heights at parturition, and calving ease scores were not different among treatments. Standard heifers produced 14% more milk than high heifers but not more than high-bST heifers. The high-protein, high-energy diet decreased age at first parturition and first-lactation milk production, but did not affect reproduction. Injection of bST during the prepubertal growth period combined with the high diet decreased age at first parturition without reducing milk production.  相似文献   

16.
Our study investigated the effects of, and interactions between, level of dietary ruminally fermentable carbohydrate (RFC) and forage particle size on milk production, nutrient digestibility, and microbial protein yield for dairy cows fed one level of dietary NDF. Eight cows (61 days in milk) were assigned to four treatments in a double 4 x 4 Latin square. Treatments were arranged in a 2 x 2 factorial design; finely chopped alfalfa silage (FS) and coarse alfalfa silage (CS) were combined with concentrates based on either dry cracked shelled corn (DC; low RFC) or ground high-moisture corn (HMC; high RFC). Diets were fed ad libitum as a total mixed rations with a concentrate to forage ratio of 61:39. Diets based on DC had a predicted NEL content of 1.73 Mcallkg dry matter (DM), while HMC diets contained 1.80 Mcal/kg DM. Diets averaged 18.7% CP, 24.0% NDF, 18.3% ADF, and 27.4% starch on a DM basis. Mean particle size of the four diets was 6.3, 2.8, 6.0, and 3.0 mm for DCCS, DCFS, HMCCS, and HMCFS, respectively. Increasing level of RFC decreased dry matter intake (DMI) from 25.0 to 23.8 kg/ d and organic matter intake from 22.3 to 21.1 kg/d, but intake was not affected by particle size. Milk production averaged 44.0 and 26.8 kg/d solids corrected milk (SCM) and was not affected by diet, but increasing level of RFC tended to increase milk yield. Efficiency of milk production, expressed as SCM/DMI, increased from 1.06 to 1.14 when level of RFC was increased. Milk composition or yield of milk components was not affected by diet, and averaged 3.53% fat, 3.11% protein, 1.55 kg/d fat, and 1.36 kg/d protein. Total tract digestibility of DM and OM increased from 71.4 to 73.0% and 72.4 to 76.1% for DM and OM, respectively, when level of RFC was increased. Total tract digestibility of fiber was unaffected by diet, but total tract starch digestibility increased from 93.1 to 97.4% when HMC replaced DC. Total urinary excretion of the purine derivatives uric acid and allantoin increased from 415 to 472 mmol/d when level of RFC was increased, and calculated microbial N supply increased from 315 to 365 g/d. When expressed as per kilogram of digestible OMI, increasing level of RFC tended to increase microbial N supply (20.4 vs. 22.2 g/kg). Cow productivity was not affected by forage particle size and ruminally fermentable carbohydrates in this study.  相似文献   

17.
Our experiment evaluated lactation and metabolic responses of Holstein cows injected with somidobove (recombinant bST) and fed one of four isocaloric rations containing either 14 (low) or 17% (high) CP and undegradable intake protein of 33 (low) or 40% (high) of CP. Multiparous cows (n = 37) in early lactation, averaging 37 kg/d of milk, received somidobove (640 mg per injection) at 28-d intervals for 112 d and one of four protein rations: low-low, low-high, high-low, and high-high. Nine other multiparous controls were fed low-low ration with no somidobove. On the low-low ration, somidobove significantly increased milk yield by 2.3 kg/d, but not 3.5% FCM (1.7 kg/d), intakes of DM or CP, or milk composition. Milk and 3.5% FCM increased by 1.7 and 2.1 kg/d in cows fed high undegradable intake protein but there was no effect on milk composition, BW, or DM intake. Ration CP had no effect on production variables in cows receiving somidobove. Serum urea was higher in cows fed high CP rations; undegradable intake protein was without effect. Plasma leucine was higher in cows fed high undegradable intake protein. Administration of somidobove to cows fed low-low rations reduced plasma methionine, serum albumin, hemoglobin, and albumin:globulin ratio. Milk production of high producing dairy cows receiving somidobove may be limited by the amount of protein available at the small intestine.  相似文献   

18.
Thirty Holstein cows were used in a 12-wk trial to study the effects of salmon meal and urea on lactational performance. Two experimental diets, one containing 5.6% salmon meal and the other 5.2% salmon meal plus .42% urea, were compared with a soybean meal control diet. Salmon meal and urea replaced a portion of the soybean meal. Dietary undegraded intake protein levels (expressed as percentage of CP) were 28.8, 35.6, and 32.4% for soybean meal, salmon meal, and salmon meal plus urea. Total mixed diets (average 17.3% CP, 17.6% ADF) consisting of 60% concentrate mixture and 40% bromegrass silage (DM basis) were fed twice daily. Total DMI was lower with salmon meal compared with soybean meal (20.2 versus 22.2 kg/d); salmon meal plus urea (21.2 kg/d) was intermediate. Actual milk production was similar for all diets (average 41.1 kg/d). Percentage milk fat and 4% FCM yield were lower with salmon meal (2.56%, 31.6 kg/d) and salmon meal plus urea (2.50%, 31.4 kg/d) than with soybean meal (3.03%, 35.9 kg/d). Gross efficiency (weight FCM/weight DMI) was higher for soybean meal than for salmon meal and salmon meal plus urea. Acetate: propionate tended to be higher with the soybean meal diet. The use of a high oil fish meal to provide a source of rumen undegraded intake protein, alone or in combination with urea, resulted in a decrease in milk fat percentage and yield without any beneficial effects on milk production or lactational efficiency.  相似文献   

19.
The onset of lactation in dairy cows is characterized by severe negative energy and protein balance. Methionine availability during this time for milk production, hepatic lipid metabolism, and immune function may be limiting. Supplementing Met to peripartal diets with adequate Lys in metabolizable protein (MP) to fine-tune the Lys:Met ratio may be beneficial. Fifty-six multiparous Holstein cows were fed the same basal diet from 50 d before expected calving to 30 d in milk. From −50 to −21 d before expected calving, all cows received the same diet [1.24 Mcal/kg of dry matter (DM), 10.3% rumen-degradable protein, and 4% rumen-undegradable protein] with no Met supplementation. From −21 d to expected calving, the cows received diets (1.54 Mcal/kg of DM, 10% rumen-degradable protein, and 5.1% rumen-undegradable protein) with no added Met (control, CON; n = 14), CON plus MetaSmart (MS; Adisseo Inc., Antony, France; n = 12), or CON plus Smartamine M (SM; Adisseo Inc.; n = 12). From calving through 30 d in milk, the cows received the same postpartum diet (1.75 Mcal/kg of DM and 17.5% CP; CON), or the CON plus MS or CON plus SM. The Met supplements were adjusted daily and top-dressed over the total mixed ration at a rate of 0.19 or 0.07% (DM) of feed for MS or SM. Liver tissue was collected on −10, 7, and 21 d, and blood samples more frequently, from −21 through 21 d. Data were analyzed using the MIXED procedure of SAS (SAS Institute Inc., Cary, NC) with the preplanned contrasts CON versus SM + MS and SM versus MS. No differences in prepartal DM intake (DMI) or body condition score were observed. After calving, body condition score was lower (2.6 vs. 2.8), whereas DMI was greater (15.4 vs. 13.3 kg/d) for Met-supplemented cows. Postpartal diet × time interactions were observed for milk fat percentage, milk fat yield, energy-corrected milk:DMI ratio, and energy balance. These were mainly due to changes among time points across all treatments. Cows supplemented with either Met source increased milk yield, milk protein percentage, energy-corrected milk, and milk fat yield by 3.4 kg/d, 0.18% units, 3.9 kg/d, and 0.18 kg/d, respectively. Those responses were associated with greater postpartum concentration of growth hormone but not insulin-like growth factor 1. There was a diet × time effect for nonesterified fatty acid concentration due to greater values on d 7 for MS; however, liver concentration of triacylglycerol was not affected by diet or diet × time but increased postpartum. Blood neutrophil phagocytosis at 21 d was greater with Met supplementation, suggesting better immune function. Supplemental MS or SM resulted in a tendency for lower incidence of ketosis postpartum. Although supplemental MS or SM did not decrease liver triacylglycerol, it improved milk production-related traits by enhancing voluntary DMI.  相似文献   

20.
Sixty high producing Holstein cows were randomly assigned in a 3 x 2 factorial to evaluate three sources of carbohydrates that differed in solubility and degradability (corn, barley, and dried whey) with two sources of CP solubility (soybean meal and urea) during wk 4 through 14 postpartum. Total mixed diets, formulated to be isonitrogenous at 16% CP, contained (DM basis) 40% corn silage, 10% chopped alfalfa hay, and 50% of the respective concentrate mix. Milk production (32.8, 31.5, and 31.3 kg/d) was highest for cows fed corn, whereas 4% FCM (30.0, 27.9, and 29.5 kg/d) was similar for cows fed corn and dried whey and lower for cows fed barley. Percentages of fat (3.37, 3.36, and 3.51) and protein (3.05, 3.00, and 2.98) were similar for cows fed all carbohydrate sources. Solubility of protein (soybean meal versus urea) did not affect production of milk (32.2 and 31.5 kg/d) and 4% FCM (29.4, and 28.9 kg/d). Intake of DM was lowest for cows fed barley (20.4, 18.8, and 20.5 kg/d), and intakes were similar (19.9 and 19.9 kg/d) for cows fed soybean meal and urea. Providing sources of carbohydrates in the diet that are more soluble and degradable (i.e., barley or dried whey) did not give the expected increase in utilization of a highly soluble CP source (urea) for milk production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号