首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
南海北部神狐海域天然气水合物成藏动力学模拟   总被引:4,自引:1,他引:3  
为进一步了解南海北部神狐海域天然气水合物的成藏匹配条件,利用典型二维地震剖面,构建了该区的地质模型,并对其进行了天然气水合物成藏动力学的模拟。研究结果表明:神狐海域具备天然气水合物成藏的温度、压力条件;生物气和热解气的资源潜力巨大,满足水合物形成的气源条件;运移条件优越,有利于天然气水合物的聚集成藏。并提出了该区天然气水合物的成藏模式。  相似文献   

2.
天然气水合物成藏系统的研究对于认识具有强非均质性的天然气水合物的资源分布、预测其甜点、提高其勘探成效具有重要的意义。通过综合分析天然气水合物在成藏条件、成藏要素和成藏模式等方面的研究认识和勘探成果,综述了天然气水合物成藏系统在气源、稳定带特征及影响因素、储层类型与特征、运移通道类型和成藏模式等方面的研究新进展。天然气水合物的气源可分为生物气、深部热解气和混合气3种类型;水合物的储层类型包括软泥、粉砂质泥和粉砂等多种类型;在粒度较粗的储层中,水合物的含气饱和度往往相对较高;断层、裂隙、底辟构造、气烟囱和高渗透性地层等是天然气水合物的有效运移通道。前人依据气源及其与水合物稳定带的配置关系、水合物的生成速度与分解速度的消长关系、水合物形成的主控因素、运移通道的类型等建立了多种水合物成藏模式,但对于成藏过程中各成藏要素的时空演化及耦合关系、成藏效率的定量评价等研究仍不足,有必要将天然气从气源灶运移至稳定带的动力学过程与稳定带内天然气的运移、聚集、分解和散失的动力学过程有机结合起来开展研究。采用成藏动力学定量研究的思路和方法,应用大数据和人工智能等新技术来定量表征天然气水合物的成藏要素及其时空演...  相似文献   

3.
中国海域天然气水合物勘探研究新进展   总被引:2,自引:1,他引:1  
张树林 《天然气工业》2008,28(1):154-158
天然气水合物是中国未来最具潜力的新型替代能源。中国的天然气水合物资源量巨大,自中国开展天然气水合物勘探研究工作的17年来,中国在海域天然气水合物勘探研究方面取得了7个方面的进展,特别是2007年5月,中国地质调查局在南海神狐海域钻获近海底天然气水合物沉积样品,这是中国天然气水合物勘探上的一个重大突破。但是,中国海域天然气水合物的勘探研究还存在5个方面的主要问题:海域天然气水合物资源量预测过大;对天然气水合物成藏动力学、成藏体系研究不够,尤其是对烃源研究不够;中国在天然气水合物沉积层岩石物理方面的研究几乎还是空白;对地震剖面上的BSR、振幅空白带与天然气水合物沉积层的关系仍然不是十分清楚;中国目前的天然气水合物勘探技术研究还不够深入、不够系统。指出了中国天然气水合物勘探的光明前景。  相似文献   

4.
为查明南海北部琼东南盆地生物成因和热成因天然气的资源潜力及其对天然气水合物成藏的贡献,根据琼东南海域天然气水合物调查区典型二维地震剖面,构建了该区的地质模型,并结合区域内岩性、地热和地球化学等参数对其进行了天然气水合物成藏的数值模拟。结果表明:琼东南盆地具备天然气水合物成藏的稳定域范围,稳定域厚度介于220~340m之间;生物气和热解气的资源潜力巨大,满足天然气水合物形成的气源条件;运移条件优越,有利于天然气水合物的聚集成藏。最后根据气体来源及其运移特征讨论了该区域天然气水合物成藏的地质模式。  相似文献   

5.
天然气水合物是一种绿色能源,具有广阔的开发利用前景。青藏高原多年冻土大面积分布,中新生代盆地数量众多,盆地内烃源岩发育,为天然气水合物的形成提供了良好的条件。主要从物质条件、环境条件、热力学条件、地质条件等方面来探讨青藏高原多年冻土区天然气水合物的成藏条件。分析认为青藏高原地层中丰富的有机质及其较高的成熟度是成藏的物质条件,低温、高压、冻土厚度大、地温梯度小等是保证其成藏的环境和热力学条件,大量的运移通道、较好的圈闭是其成藏的有利地质条件。预测了青藏高原多年冻土区天然气水合物有利的找矿前景区。  相似文献   

6.
天然气水合物是由烃类气体(主要是甲烷)和水在一定温度、压力条件下形成的一种固态似冰状笼形化合物。与常规油气藏系统不同,天然气水合物成藏的关键因素主要包括天然气水合物稳定条件、水源条件、气源条件、流体运移条件和储集空间条件。天然气水合物的成藏要素决定了天然气水合物稳定带内天然气水合物的产出既非连续也非随机,不同地质背景下的天然气水合物有着不同的分布范围和地质特征。天然气水合物成藏特征和富集控制因素体现在以下几方面:天然气水合物形成与分布受温度和压力条件控制,在天然气水合物稳定带内动态成藏;天然气水合物主要赋存在晚中新世以来松散沉积物中,埋藏深度较浅,通常位于海底0~500m;天然气水合物资源丰度普遍较低,大面积分布、局部富集,存在"甜点"核心区;天然气水合物形成气兼具微生物成因和热成因特征,天然气水合物规模化成藏富集有赖于流体运移;天然气水合物以固态形式赋存,生长和赋存模式多样,存在构造型、地层型和复合型天然气水合物藏。  相似文献   

7.
天然气水合物(以下简称水合物)藏对地质条件的变化较为敏感,微弱波动即可造成水合物藏被破坏。为研究水合物藏在温度突变下的分解过程,在水合物三维成藏物模实验系统(装置主体为32 MPa高压反应釜,反应釜内部由5个温度传感器和30个电阻率探测电极构成空间点阵)中合成了100 L的人工水合物矿体,测定了水合物矿体在外界温度升高到295 K后其内部温度、电阻率的变化情况,并以此为基础分析了水合物薇在温度发生突变以后的演化行为。实验结果表明:①人工水合物矿体在环境温度升高后会迅速分解(经过600 h才生成并达到稳定的矿体仅需38 h即可完全分解),通过监测实验过程中介质温度和电阻率变化,可以对分解过程中的分解量、分解速度进行考察;②分解过程中,电阻率变化受水合物饱和度、孔隙水盐度以及地层位置的影响,其中,水合物饱和度较高的区域发生少量分解时,由于孔隙水被稀释会导致电阻率上升;③对于海底水合物藏,当发生持续、显著的温度变化后,其气体组分、赋存方式等均会发生明显改变。  相似文献   

8.
天然气水合物的沉淀/分解作用是一种放热/吸热反应,海底天然气渗漏是从高温区向低温区运移而且携带热量,这2种热量(水合物生成热和渗漏天然气热容热)会导致海底温度场的变化并影响水合物的形成。以美国墨西哥湾布什山水合物丘为例,应用渗漏天然气形成水合物的动力学模型,探讨了水合物生成热和渗漏天然气热容热对水合物稳定性的影响:在布什山,水合物天然气渗漏量为1.8 kg/(m2·a)和10%的渗漏天然气沉淀为水合物条件下,10 ka内水合物生成热和渗漏天然气热容热使海底表层的地温梯度增加了3℃/km,在1 km深处的沉积层地温梯度则降低了1.4℃/km左右,温度最大的扰动发生于400 m左右深的沉积层里(增加了0.4℃),这样的温度场变化使水合物稳定带厚度减少了12 m,使0.06 kg/m 2的水合物分解。  相似文献   

9.
从天然气水合物的温度、气源和水源等基本成藏要素着手,探索我国冻土区天然气水合物形成条件及可能的成藏模式。主要分析了羌塘盆地、祁连山地区以及漠河盆地油气地质条件和温度条件,并进一步总结了其天然气水合物成藏条件;其中,祁连山木里地区构造、气源和温度等条件相对较好,是目前冻土区天然气水合物勘探研究的有利区域。对木里地区天然气水合物的气源、石油地质条件及构造演化特征等方面的分析表明,断裂的发育控制了木里地区天然气水合物藏的形成,下部烃源岩生成的烃类气体在断层的作用下再次运移到水合物稳定带成藏;常规气藏经后期的构造抬升到水合物稳定带也可形成天然气水合物藏。  相似文献   

10.
运用天然气水合物含油气系统理论,对天然气形成、分解这一复杂动态物理化学过程的研究进展进行了论述,分析了天然气水合物含油气系统的研究进展、存在问题和发展趋势,得到以下结论:大多数天然气水合物气源与生物降解密切相关;影响天然气水合物温度-压力临界曲线的主要因素为天然气、孔隙水的组分,地温梯度和冻土厚度不改变天然气水合物温度...  相似文献   

11.
深水油气井测试过程中,容易发生气体水合物堵塞井下安全阀的问题,为避免出现该问题,研究了安全阀合理下入位置的确定方法。利用气体水合物相平衡微观试验装置,在室内模拟了地层水矿化度下多组分气体水合物在水中的相变过程,得到了温度和压力对气体水合物相平衡的影响规律;分析了气体组分、水深、地温梯度和井口压力对生成气体水合物的影响,预测了气体水合物的生成区域,从安全和成本2方面考虑给出了安全阀最小下入深度的确定方法。研究发现,气体组分、水深、地温梯度、井口压力均会影响安全阀的下入位置,产出气中乙烷、丙烷和丁烷含量增加更易生成气体水合物;同时,水深越深,地温梯度越小,井口压力越大,生成气体水合物的区域越大,安全阀需要下入到更深的位置。研究认为,上述研究成果可为深水油气井测试中安全阀下入位置的确定提供参考。   相似文献   

12.
中国陆上冻土区和海域深水区都拥有丰富的天然气水合物(以下简称水合物)资源,二者虽在同盆共生、运聚机理上有相似之处,但差异也十分明显。为了给地质—工程—环境一体化开发水合物提供准确的基础地质数据,从构造与沉积、地温、热流、地球化学、地球物理响应、赋存类型、孔渗、力学强度、饱和度等9个方面,对比分析、总结了二者在分布规律与赋存特征上的差异性。研究结果表明:①陆上冻土区水合物主要赋存于中生代地层,以热成因气为主,受断层裂隙构造控制,具有较好的圈闭条件,其储层温度、地温梯度、热流、压力表现为“四低”特征,水合物多数分布在砂岩孔隙和泥页岩裂隙中;②陆上冻土区水合物测井响应总体显示“两高两低”特征(高电阻率、高波速、低自然伽马、低密度),储层岩石力学强度高,具有低孔隙度、低渗透率和低水合物饱和度特征;③海域水合物主要赋存于新生代第四纪地层,热成因或生物成因气皆有,受泥底辟、气烟囱、断层裂隙控制,无明显圈闭,其储层温度、地温梯度、热流和压力表现为“四高”特征;④海域水合物多数分布在富含有孔虫的黏土质粉砂和粉砂质黏土中,地震反射波显示明显的BSR特征,测井响应则总体表现为“两高”特征(高视电阻率、高波速),其储层沉积物力学强度低,具有高孔隙度、低渗透率和相对较高的水合物饱和度。结论认为:①海域是中国水合物富集的主要区域,后续应突破海域水合物甜点识别与评价技术,统筹考虑整个水合物油气系统的资源禀赋特征;②应重点攻关水合物储层精细表征技术和富集矿体—储层系统的精细刻画,加强海陆联合和全球比对研究。  相似文献   

13.
Characterization of natural gas hydrate bearing formations is important in the exploration and development of gas hydrate resources in subsea sediments. Solid hydrates can fill the voids of the matrix formed by sand grains and change their cementation condition, which may have a great impact on the electrical resistance and sound velocity of the sand matrix. In this study, experiments have been conducted to measure the ultrasonic velocity and electrical resistance in a large sandpack simulating the conditions of hydrate formation in subsea sediments. The effects of hydrate on the resistivity and ultrasonic velocity of hydrate bearing sand matrix have been revealed and modeled. The data can be used in well logging to determine hydrate saturation and other properties of hydrate bearing formations.  相似文献   

14.
多孔介质中甲烷水合物生成的排盐效应及其影响因素   总被引:9,自引:0,他引:9  
利用不同粒径的多孔介质模拟了海洋天然气水合物的生成过程,测定了孔隙水中主要离子质量浓度的变化.研究结果表明,甲烷水合物的生成过程使周围沉积物孔隙水中离子质量浓度发生异常.水合物生成引起的排盐效应主要取决于耗气量.耗气量越大,生成水合物的量越大,排盐效应也就越强,但孔隙水溶液中不同离子质量浓度的变化并不一致.高频振动大大加快了反应速度;粗颗粒(粒径大于125μm)沉积物对水合物生成速度影响不大,而细颗粒(粒径小于74μm)沉积物则明显阻碍水合物的生成.压力对排盐效应的影响体现在反应时间上.在相同反应条件下,反应时间与过冷温度呈幂函数关系.  相似文献   

15.
利用中国石油大学自制的一维天然气水合物成藏模拟装置,采用常规热解成因气为气源,海底沉积物为多孔介质,进行了水合物形成模拟实验,并采用电阻率法对沉积物中水合物形成与分布进行观测分析.结果表明,沉积物不同部位电阻率的变化不同,沉积物中下部电阻率先增加后趋于稳定,中上部电阻率呈降低-增加(或稳定)-降低-增加-稳定的变化趋势,这种电阻率的变化反映了不同部位的水合物的生成和分布.在中上部水合物诱导成核时,中下部已进入水合物生长阶段,由于温度梯度的影响,水合物生长缓慢,分散状分布;在气体供应充足的条件下,中上部水合物能大量生成,呈块状分布.在上述分析的基础上建立了沉积物中水合物生长与分布模式.   相似文献   

16.
对国内外有关海底沉积物中天然气水合物生成和分解规律方面的研究进行了详细调研,得到如下结论:天然气水合物的生成和分解条件在海底沉积物中与在井筒、管道中有明显不同,其主要原因是多孔介质中流体与孔隙壁面间的界面效应对海底沉积物中天然气水合物的形成条件会产生明显影响;在海底沉积物中天然气水合物生成和分解条件的数值模拟技术研究方面,研究者大都假设以天然气水合物作为盖层的成藏类型,借助常规油气藏数值模拟技术进行模拟研究;影响海底沉积物中天然气水合物生成和分解条件的因素很多,因此海底沉积物中天然气水合物生成和分解规律研究必须借助试验模拟、数值模拟和现场测试相结合的综合方式进行。该调研成果可为今后天然气水合物经济有效开采技术方案选择和进行天然气水合物危害控制等提供参考。  相似文献   

17.
结合海底水合物沉积成藏特征,发现水合物易在海底沉积物中生成,且还有类似表面活性剂的催化酶存在。结合以上因素,实验将人造海水和十二烷基硫酸钠(SDS)溶液进行混合,研究了碳酸钙和二氧化硅作为多孔介质时甲烷水合物的生成情况。研究表明:(1)多孔介质体系较无多孔介质体系实验剩余压力更低,水合物的储气密度和储气速率更大,其中1 mm碳酸钙的促进效果最优;(2)多孔介质表面特性和粒径变化均会改变水合物的储气效果,同种粒径下,碳酸钙促进效果优于二氧化硅;(3)人造海水中的低浓度盐类通过离子交换和破坏SDS胶束团的作用,对水合物储气效果的促进优于纯SDS溶液;(4)三者的协同体系可以有效地缩短水合物的诱导期,为探究海底水合物成因和水合物快速生成技术的应用提供了参考。  相似文献   

18.
不同大陆边缘(主动、被动)沉积物中天然气水合物(以下简称水合物)赋存的控制因素与成藏模式有所差异,开展二者之间的对比研究对于指导水合物勘探具有重要的意义。为此,以主动大陆边缘卡斯凯迪亚(Cascadia)和日本南海(Nankai)海槽、被动大陆边缘布莱克海台(Blake Ridge)和尼日尔三角洲盆地(Niger Delta Basin)等典型水合物成藏区为研究对象,借助于综合大洋钻探(IODP)航次资料解剖和数值模拟分析等手段,从应力场的角度探讨了上述两种背景下含甲烷流体的驱动样式,进而对比分析了主动、被动大陆边缘水合物的成藏模式。研究结果表明:①主动大陆边缘以侧向挤压应力为气体垂向运移提供了驱动力和通道,引诱深部游离气和原位生物气沿断裂运移,气体运移通道主要为俯冲—增生产生的断层、断裂和滑塌体;②主动大陆边缘粉砂和砂质粉砂等粗粒浊流沉积孔隙度大、渗透性好,并且增生楔上沉积物厚度大,是水合物成藏较为有利的储集空间;③较之于主动型大陆边缘,被动大陆边缘虽然缺少俯冲带造成的侧向应力,但在其内巨厚沉积层塑性物质及高压流体、陆缘外侧火山活动等的共同作用下,产生垂向加积和拉张应力,形成的扩散型水合物聚集速率主要取决于甲烷的供给速度;④被动大陆边缘有机质含量、产气速率、地温梯度及沉积速率对水合物含量空间分布具有差异性影响,泥火山或底辟构造等为水合物的形成与赋存提供了理想的场所。  相似文献   

19.
南海北部陆坡热流与天然气水合物赋藏研究   总被引:2,自引:0,他引:2  
天然气水合物逐渐成为科学界研究焦点,内容包括能源、温室效应以及灾害预防等课题。我国的南海沉积盆地富含有机质烃源岩,气源条件和海底物理条件有利于水合物的生成,尤其2007年在南海发现了样品实物进一步证明了其广阔前景。通过南海北部陆坡获取的127个地热数据,采用静态模式研究其赋存状况。特征指标为天然气水合物的稳定带厚度,主要受控于地温梯度、相变曲线及气源中重烃的组成比例等参数,同时依据南海北部陆坡3种可能气源组成情况计算稳定带厚度分布,对上述参数变化因素影响气水合物量值关系做出解析及数值解释。计算结果表明地热是重要的天然气水合物控制因素,地热数据是天然气水合物重要的寻矿指标。   相似文献   

20.
国际科学大洋钻探计划自1970年首次在布莱克海脊钻遇天然气水合物(以下简称水合物)以来,迄今已在全球三大洋(太平洋、大西洋、印度洋)的大陆边缘总共53个站位钻遇了水合物,采集了大量的地球物理测井资料,为理解水合物及其宿主沉积物原位特性提供了关键信息。水合物所具有的不导电、低密度、高声波速度、高含氢量等特性,为根据测井资料识别水合物并预测其分布提供了重要的依据。目前已提出的一系列根据测井资料估算水合物饱和度的方法,主要包括阿尔奇公式、密度—核磁共振测井联合、各种形式的三相声波方程以及基于不同岩石物理模型的弹性波速度模拟等方法。海底水合物具有明显的非均质分布特性,主要表现在水合物分布对宿主沉积物岩性的选择性以及在相同岩性宿主沉积物内部对成核部位的选择性上。尽管测井资料在评价水合物分布的非均质性、推断水合物生长习性方面已经得到了初步应用,但仍然存在着一些不足:①大洋钻探水合物测井解释中所依赖的地层模型还是过于简单,大多数都是两组分或三组分模型;②高分辨率随钻测井资料的应用还很有限;③测井解释与岩心地质研究的结合还不够紧密。结论认为,将水合物与宿主沉积物视为一个整体,基于更为复杂的地层模型,在岩心标定的基础上,依据多种高分辨率随钻测井资料,联合反演地层的岩性组分、孔隙度和水合物饱和度,或许是未来水合物储层测井评价发展的一个重要方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号