首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 572 毫秒
1.
针对高Mg和Li质量比盐湖卤水提锂困难的问题,提出利用LiFePO4/FePO4材料对盐湖卤水进行选择性提锂的思路。在热力学计算的基础上绘制298.15 K时Me(Li,Na,K,Mg)-Fe-P-H2O体系的-pH图,并讨论FePO4对盐湖中Na+、K+、Mg2+与Li+的选择性吸附问题。结果表明:当离子浓度为0.1 mol/L、体系氧化还原电位降到0.36 V(vs SCE)时,FePO4中+3价的铁即被还原为+2价,同时Li+嵌入FePO4晶格生成LiFePO4;而体系电位需降到0.132 V和0.073 V才分别生成KFePO4和NaFePO4,说明材料对Li的选择性优于Na和K的,而Mg0.5FePO4则在计算分析的范围内不能稳定存在,说明FePO4对Mg2+无吸附性。因而,在适当的电位范围内(本研究的计算条件下为0.173~0.33 V)即可利用磷酸铁材料实现Li与Na、K、Mg等元素的选择性提取,而吸附锂后通过调节氧化还原电位大于约0.33 V,即可实现LiFePO4材料中Li的脱出。  相似文献   

2.
Sol-Gel合成LiMn2O4及其锂离子脱嵌/嵌入性能与结构的研究   总被引:5,自引:0,他引:5  
采用溶胶-凝胶前驱体法合成了正尖晶石结构的LiMn2O4,研究了产物的结构、性能以及最佳的制备条件.结果表明,原料的配比和干胶的焙烧温度对产物的组成、结构以及颗粒形态有重要的影响.进一步的研究表明,LiMn2O4在1.0 mol·L-1HCl中酸浸120 h可得高纯度的λ-MnO2,λ-MnO2浸锂后得到Li+与LiMn2O4所形成的固溶体Li1.01Mn2O4,其锂离子脱嵌/嵌入在结构上是可逆的.固溶体Li1.01Mn2O4的形成可提高材料的锂离子筛分性能.  相似文献   

3.
t-BAMBP-煤油溶液萃取盐湖卤水中铷和铯离子(英文)   总被引:2,自引:0,他引:2  
将工厂提钾后的盐湖卤水作为提取Rb+和Cs+的实验用卤水,将萃取剂t-BAMBP的磺化煤油溶液作为有机相进行萃取。在萃取之前预先沉淀出镁并作为一种产品,在反萃前再多次洗涤分离出大部分的K+和Na+,最终使Rb+和Cs+得到有效富集和分离。研究油水相比(O/A)、水相的碱性(c(OH-)、K+和Mg2+的含量及洗涤油水相比(O/A′)对萃取过程的影响。最佳工艺条件为:1.0 mol/L的t-BAMBP磺化煤油溶液,水相碱性c(OH-)=1 mol/L,油水相比O/A=1:1。当用1×10-4 mol/L Na OH溶液洗涤萃取油相3次,洗涤油水相比O/A′=1:0.5时,铷和铯的洗脱率仅为10.5%。经过5级逆流萃取,最终铷和铯的萃取率分别达到了95.04%与99.80%。  相似文献   

4.
研究在酸性介质中从锰银矿中同时浸出锰和银的热力学基础与技术条件。Mn-H2O系和Ag-H2O系电位(φ)—pH图研究结果表明:Mn^2+和Ag^+可以有一个稳定共存的区域,热力学条件为:25℃和101.325 kPa下,[Mn]=1 mol/L,[Ag]=10^-3 mol/L,pH〈3.63,0.621 7〈φ〈(1.229-0.118 2pH)和3.63〈pH〈4.635,0.6217〈φ〈(1.4434-0.1773pH)。过氧化氢的加入在一步法浸出过程中起着关键作用,在还原二氧化锰的同时还能同时使银氧化。加入高锰酸钾的作用是使矿石中未被二氧化锰包裹的银被氧化。室温下,浸出时间为2h,高锰酸钾浓度为2g/L,过氧化氢浓度为0.8mol/L,硫酸浓度为0.9mol/L,获得锰的浸出率为95.62%,银的浸出率为83.28%。  相似文献   

5.
以Mn3O4为前驱体制备尖晶石型LiMn2O4及其性能   总被引:1,自引:0,他引:1  
采用改进的固相反应法合成了高性能的锂离子电池正极材料LiMn2O4。首先,以廉价的MnSO4为原料,通过水解氧化法制备纳米级Mn3O4前驱体;然后,将Mn3O4和Li2CO3混合均匀,在750℃固相反应20 h,得到尖晶石型LiMn2O4。用X射线衍射(XRD)和扫描电镜(SEM)对Mn3O4前驱体和LiMn2O4样品进行表征,用充放电测试和循环伏安技术对LiMn2O4样品进行电化学性能研究。结果表明:所制备的LiMn2O4具有完整的尖晶石型结构,且晶体粒子分布均匀。所制备的LiMn2O4材料在3.0~4.4 V之间,室温(25℃)下,在0.2C倍率下首次放电比容量为130.6 mA.h/g;在0.5C倍率下首次放电比容量为127.1 mA.h/g,30次循环后,容量仍有109.5 mA.h/g,且样品具有较好的高温性能。  相似文献   

6.
研究了(Al,Mn)3Ti-2V和TiAl在900℃的(Na,K)2SO4以硬850℃的Na2SO4+NaCl熔盐中的热腐蚀行为.结果表明,(Al,Mn)3Ti-2V在(Na,K)2SO4中的耐蚀性很好,腐蚀产物膜很薄,外层是保护性的A12O3,内层是Al2O3+TiO2+TiS的混合膜.当熔盐中存在NaCl时,(Al,Mn)3Ti-2V的耐蚀性极差,腐蚀产物的厚度比在(Na,K)2SO4中大100多倍,且具有分层结构,最外层富MnO(含少量Al2O3和TiO2),第二层为Al2O3+少量TiS,第三层为TiO2+TiS,由于不能形成保护性的Al2O3层,腐蚀产物极易剥落.  相似文献   

7.
以醋酸锰和醋酸锂为原料,柠檬酸为燃料,研究了不同柠檬酸用量及不同硝酸浓度改性对液态燃烧合成法制备尖晶石型LiMn2O4的影响。结果表明,柠檬酸与锰离子的摩尔比≤0.5时,所得产物的主晶相为LiMn2O4,含有极少Mn2O3等杂质;〉0.5时,所得产物主要为Mn2O3,LiMn2O4含量较少。燃烧反应产物中LiMn2O4相对含量随硝酸浓度的升高而增加,当柠檬酸与锰离子的摩尔比为0.1,硝酸浓度为2mol/L时,所得尖晶石型LiMn2O4较纯净且结晶性较好,但晶体粒子尺寸分布不均。  相似文献   

8.
以己二酸为配位体采用溶胶-凝胶法合成了LiMn2O4,Mg掺杂或Mg和F复合掺杂的尖晶石锂镁氧化物正极材料.对合成出的样品采用X-射线衍射仪、X-光电子能谱、扫描显微电子镜、循环伏安测试和充放电测试仪进行了详细的研究.X-射线衍射结果表明,所有的样品都具有相同的纯尖晶石相,LiMg0.1Mn1.9O4和LiMg0.1Mn1.9O3.95F0.05与LiMn2O4的样品相比,具有较小的晶格参数和晶胞体积.X-光电子能谱试验结果表明,在LiMn2O4中,Mn3 和Mn4 的相对量分别为50.2%和49.8%,而LiMg0.1Mn1.9O3.95F0.05中Mn3 和Mn4 的相对量分别为48.4%和51.6%.扫描电镜结果显示,LiMg0.1Mn1.9O3.95F0.05颗粒尺寸略小、尺寸分布窄,形态结构更为规整.循环伏安实验显示,Mg和F复合掺杂的尖晶石具有更好的可逆性.LiMn2O4,LiMg0.1Mn1.9O4,LiMg0.1Mn1.9O3.95F0.05样品的首次放电能量和能量保持率分别为123、111、114 mAh·g-1和86.5%、92.3%、90.9%,且LiMg0.1Mn1.9O4和LiMg0.1Mn1.9O3.95F0.05具有比LiMn2O4更高的库仑效率.  相似文献   

9.
本文研究了扎布耶盐湖的卤水-20℃冷冻后20℃等温蒸发结晶过程。结果表明,冷冻后卤水析出了复杂的矿物质,Li+的浓度从1.05上升到1.33 g/L。整个蒸发过程中,Na元素大量析出;当蒸失率为58.27%时,Li的析出达到峰值,固相中Li含量为0.42%;K存在2个析出高峰,当蒸失率为73.90%和87.42%时,固相中K的含量分别为5.49%和9.36%。  相似文献   

10.
研究锂离子电池正极活性材料尖晶石LiMn2O4和LiCoO2与6种电解液充、放电时的相容性。用X射线衍射检测自制的LiCoO2试样和尖晶石LiMn2O4试样的结构;用粉末微电极循环伏安法测定6种电解液在导电剂乙炔黑表面的氧化电位;将制得的尖晶石LiMn2O4试样和LiCoO2试样在上述电解液中进行恒电流充放电实验。结果表明:充电至高电位3.3~4.3V(vs Li/Li^+)时,如果正极活性材料表面与电解液发生不可逆反应并在其上覆盖一薄层电子不可导的钝化膜,则将导致活性材料的充、放电效率降低,放电容量减少,即正极活性材料与电解液的相容性差;反之,则相容性好;尖晶石LiMn2O4与上述6种电解液的相容性都很好,普适性强;LiCoO2与上述6种电解液的相容性差别较大,呈选择性。  相似文献   

11.
以水热法自制γ-MnOOH和LiOH?H 2 O为原料,在较低温度下固相反应制备出尖晶石型Li 4 Mn 5 O 12,经酸浸脱锂后得到对Li+具有特殊选择性的MnO 2离子筛。研究该离子筛对Li+的吸附性能和选择性,并用XRD、SEM和FT-IR等和Li+选择性吸附研究固相反应工艺对离子筛材料结构、化学组成及离子交换性质的影响。结果表明:煅烧时间对前驱体的生成有较大影响,由400℃煅烧32 h所得的前驱体为纯相Li 4 Mn 5 O 12化合物,经酸浸脱锂后的离子筛仍保持与前驱体相同的尖晶石结构;锰源γ-MnOOH、前驱体Li 4 Mn 5 O 12和离子筛MnO 2均为低维棒状结构形貌;离子筛对锂的吸附速率符合一级动力学Lagergren方程,饱和吸附容量为40.2 mg/g,并具有较好的Li+选择性。  相似文献   

12.
富锂尖晶石Li1+xMn2-xO4的合成与性能   总被引:8,自引:2,他引:8  
将MnO2和Li2CO3通过固相反应法合成了化学计量比的LiMn2O4和富锂型Li1 xMn2-xO4(x=0.02,0.04,0.06,0.08,0.1).研究表明,所合成的样品均具有尖晶石结构,无杂相存在,样品的晶格常数随x值的增大而减小.用SEM分析了样品的表面形貌,发现掺锂可明显改善LiMn2O4一次颗粒表面的结构,抑制表面裂纹的产生.电化学性能测试表明,随着掺锂量的提高,电极的循环性能变好.通过研究发现,Li1.04Mn1.96O4具有较高的初始容量和良好的循环性能,因而,Li1.04Mn1.96O4是一种比较理想的锂离子电池正极材料.  相似文献   

13.
1 Introduction As one of the most promising cathode materials for lithium ion batteries, spinel LiMn2O4 has received much attention in recent years. This material has reversible capacities at both 3 V and 4 V plateaus[1]. However, the Li insertion and ex…  相似文献   

14.
采用X射线衍射仪、扫描电子显微镜、电池测试系统等研究了不同稀土掺杂元素La、Ce、Nd等对Pechini法合成的LiMn2O4材料的相结构、形貌及电化学性能的影响规律.结果表明,合成的LiMn2O4、LiLa0.03Mn1.97O4、LiLa0.01Ce0.01Nd0.01Mn1.97O4样品具有纯尖晶石型LiMn2O4结构,LiLa0.015Ce0.015Mn1.97O4样品由LiMn:O.相及微量杂质相CeO2组成;样品呈规则的近球形或球形,其粒径范围为0.5~2.5μm.稀土元素取代使LiMn2O4材料的初始容量略有降低、循环稳定性能有较大增加,LiMn2O4、LiLa0.03Mn1.97O4、LiLa0.015Ce0.015Mn1.97O4、LiLa0.01Ce0.01Nd0.01Mn1.97O42样品的初始容量分别为126.0、120.0、117.3、124.0 mA·h/g,经30次循环充放电后的容量分别为88.9、102.7、101.6、109.1 mA·h/g.  相似文献   

15.
本文采用热重分析仪(TGA)、X-射线衍射仪(XRD)、扫描电子显微镜(SEM)、电池测试系统等方法研究了尖晶石LiMn2O4材料的高温固相合成过程的相转变、形貌变化、晶格常数及电化学性能等变化规律.结果表明:合成温度较低时(≤823 K),样品由尖晶石型LiMn2O4相、微量MnO2相(673 K)或Mn2O3相(823 K)组成;当合成温度高于973 K时,样品由热稳定性能较好的纯尖晶石型LiMn2O4相组成.呈规则的球形或近球形,粒径范围为0.5~5μm.随着合成温度的升高,LiMn2O4样品的点阵常数、晶胞体积、颗粒尺寸等有不同程度的增加,放电容量呈先增后减的规律.  相似文献   

16.
运用双参数模型和同系线性规律对Li2Ti3O7、Li4Ti5O12和Li4TiO4的标准生成吉布斯自由能进行估算,并绘制在298.15 K时,不同离子浓度下Ti-H2O系和Li-Ti-H2O系的φ—pH图。结果表明:在水溶液中,Li4Ti5O12在pH为4.1~13.7之间具有较大的热力学稳定区域,从热力学角度预测了从水溶液合成Li4Ti5O12的可能性,并通过实验在pH为9~10之间,采用TiCl4水溶液强制水解法制备出纯相尖晶石Li4Ti5O12,验证水溶液中合成Li4Ti5O12的可行性。  相似文献   

17.
采用高温固相法制备尖晶石型LiMn2O4电极材料.XRD结果表明经700℃煅烧即可得到尖晶石型LiMn2O4样品.利用恒流充放电、循环伏安和交流阻抗等测试方法研究了合成过程中温度和时间对尖晶石型LiMn2O4电极材料在2mol·L-1.(NH4)2SO4溶液中电容性能的影响.结果表明LiMn2O4电极材料具有较好的电容性能.恒流充放电和循环伏安结果表明,当煅烧温度700℃,恒温时间4-2Ah时,其容量并没有明显的变化,电流密度为10mA·cm-2时,其放电比容量保持在127F·g-1.交流阻抗结果也表明,LiMn2O4电极在2mol·L"(-1H4)2SO4溶液中具有较好的电化学电容行为,700℃下煅烧的样品的溶液欧姆电阻仅为05Ω.  相似文献   

18.
The hydrothermal synthesis of single-crystallineβ-MnO2 nanorods and their chemical conversion into single-crystalline LiMn2O4 nanorods by a simple solid-state reaction were reported.This method has the advantages of producing pure,single-phase and crystalline nanorods.The LiMn2O4 nanorods have an diameter of about 300 nm.The discharge capacity and cyclic performance of the batteries were investigated.The LiMn2O4 nanorods show better cyclic performance with a capacity retention ratio of 86.2% after 100 cycles.Battery cyclic studies reveal that the prepared LiMn2O4 nanorods have high capacity with a first discharge capacity of 128.7 mA·h/g.  相似文献   

19.
研究了(Al,Mn)3Ti-2V和TiAl在900℃的(Na,K)2SO4以及850℃的Na2SO4 NaCl熔盐中的热腐蚀行为.结果表明,(Al,Mn)3Ti2V在(Na.K)2SO4中的耐蚀性很好,腐蚀产物膜很薄,外层是保护性的Al2O3,内层是Al2O3 TiO2 TiS的混合膜.当熔盐中存在NaCl时,(Al,Mn)3Ti2V的耐蚀性极差,腐蚀产物的厚度比在(Na,K)2SO4中大100多倍,且具有分层结构,最外层富MnO(含少量NAl2O3和TiO2),第二层为Al2O3 少量TiS,第三层为TiO2 TiS,由于不能形成保护性的Al2O3层,腐蚀产物极易剥落。  相似文献   

20.
采用高温固相法在1 500℃保温4h的条件下合成了CaAl_(12)O_(19)∶Mn~(4+)红色发光材料。通过发光性能测试表征了Mn4+浓度、Na+、Li+、K+以及Mg2+等掺杂离子对材料发光性能的影响。研究发现,在紫外和蓝色波段均可有效激发CaAl_(12)O_(19)∶Mn~(4+),其发射主峰位于652nm的深红色光波段,其两侧的肩峰(640、666nm)可归属为声子副带发射。研究结果表明,Mn4+的最佳掺杂浓度为0.05 mol%;共掺的Na+、Li+、Mg2+、K+均可有效提高CaAl_(12)O_(19)∶Mn~(4+)的发光强度,其中Na+和Li+的最佳掺杂浓度均为5mol%时的发光强度可被提高2倍以上。因此,CaAl_(12)O_(19)∶Mn~(4+)是一种潜在的可用于提高LED显色性的红色发光材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号