首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为准确获得TC21钛合金塑性加工的变形特征和热加工条件,合理设计锻造工艺参数,利用Gleeble-3500热模拟机进行等温恒应变速率热压缩试验,研究了TC21钛合金在变形温度为830~1010℃、应变速率为0.01~10 s-1条件下的热变形行为,采用Arrhenius双曲线正弦函数推导出TC21钛合金本构方程。并基于动态材料模型(Dynamic Materials Model, DMM)建立了TC21钛合金的热加工图。结果表明,在本试验的变形条件下,该合金的流变应力随着变形温度的降低和应变速率的升高而增大。根据热加工图确定了合金的热加工安全区域为:变形温度为900~940℃、应变速率为0.01~0.05 s-1和变形温度为970~1010℃、应变速率为0.01~0.08 s-1。  相似文献   

2.
采用圆柱试样在Gleeble-1500热模拟机上进行高温压缩变形实验,研究了SC100-T6铝合金在高温塑性变形过程中应力的变化规律。结果表明,应变速率和变形温度的变化,强烈地影响着合金流变应力的大小,流变应力随变形温度升高而降低,随应变速率提高而增大。分析了活塞尾锻件结构尺寸和模锻成形的关键技术,并应用有限元软件模拟了热模锻成形过程,制定了模锻成形工艺。设计了合理的模具结构,通过工艺试验,得到了合格的精密锻件。  相似文献   

3.
试验研究了铝-钨合金粉末的冷压、热压制坯成形工艺,确定主要挤压工艺参数。该合金涡旋定盘挤压件致密度达到99%左右。利用Gleeble-1500热模拟机测试了该合金在变形温度为450℃~540℃,应变速率为(10-3~1)s-1条件下的流变力学行为。采用Fields-Backofen本构模型实现了对该材料应力-应变曲线的拟合。通过引入一个"软化因子",更好地描述了变形温度、应变速率和应变对流变应力的影响,进一步完善了流变应力本构模型。通过有限元模拟对涡旋定盘挤压件成形进行数值模拟,确定合理的挤压成形工艺,并通过试验进行验证,最终获得了合格的涡旋定盘挤压件。  相似文献   

4.
利用热力耦合有限元程序FORMT,对PM Rene95合金中等尺寸(外径尺寸约为630mm)涡轮盘的等温锻造工艺进行了模拟式设计.结果表明,采用TZM钼基合金模具。在1050℃以接近10-3s-1的应变速率进行闭式模锻和开式模锻,模具材料均能满足使用要求,且开式模锻设备最大载荷不超过31×103kN;采用K21合金模具,在1000℃以相同条件等温成形。模具材料因变形热效应及边界摩擦引起温升而失效且所需设备吨位相对较大.  相似文献   

5.
利用THERMECMASTOR-Z型热模拟试验机对粗片层状组织TA15合金进行了变形温度为750~1100℃、应变速率为0.001~10S。的热压缩试验。研究了变形温度、应变速率、应变对流动应力的影响,并采用逐步回归法合理地选取了影响流动应力的“最优”自变量子集,建立了合金的本构关系模型。结果表明,所建立的本构关系模型能够用来表征该合金热变形过程的力学行为;误差分析表明,该逐步回归法本构关系模型具有较高的精度,可用于指导粗片层状组织TA15合金热加工工艺制定,并可用于粗片层状组织TA15合金热变形过程的有限元模拟。  相似文献   

6.
为了获得大挤压比Al-Cu-Mg合金高精度等温挤压件,有必要精确控制其均匀的挤压出口温度和变形组织。为此,基于任意拉格朗日-欧拉(ALE)方法,采用ABAQUS有限元软件对其等温挤压过程进行模拟。通过热压缩试验获得了Al-Cu-Mg合金在不同温度和应变速率下的真应力-真应变本构关系,建立了一个新的等温挤压过程多场耦合计算模型。通过该模型,研究了挤压速度、坯料温度、模具温度对出口温度的影响规律以及挤压产品温度场、应变速率场的分布特点;并通过开展Al-Cu-Mg合金铸棒等温挤压工艺实验验证了所模拟等温挤压工艺参数的准确性,并对变形材料进行了EBSD分析和力学性能测试。结果表明:0.5mm/s挤压速度可保持模孔温度基本恒定,其中坯料温度450℃,挤压筒430℃,以及模具温度为400℃,挤压后试样的晶粒明显细化,择优排列形成平行于挤压方向的<111>丝织构,表现出优异的拉伸性能。  相似文献   

7.
采用二维有限元模拟软件Deform-2D对TC17钛合金整体叶盘锻件的等温β模锻过程进行数值模拟,分析了整体叶盘不同部位的应变场。根据有限元模拟结果对TC17钛合金整体叶盘锻件的荒坯尺寸及工艺参数进行优化,并进行了TC17钛合金等温锻造成形工艺试验。试验结果表明,等温β模锻工艺可使TC17钛合金组织中粗大原始β相晶粒得到充分的形变,晶界析出弯曲、断续的细小α相,晶内析出交错、细小的次生α相,呈现理想的网篮组织;当应变达到0.75时,可使得整体叶盘锻件的强度、塑性及断裂韧性实现理想匹配。  相似文献   

8.
为研究热加工工艺不同变形参数对TC21钛合金塑性成形过程中微观组织的影响,本文利用Gleeble-3500型热模拟试验机进行等温恒应变速率热压缩实验,研究了TC21钛合金在不同变形条件下的热变形行为;并以TC21钛合金在热压缩过程中微观组织演变为基础,通过对TC21钛合金的位错密度模型、再结晶形核和晶粒长大模型的推导,建立了元胞自动机模型,并基于元胞自动机模型对TC21钛合金β单相区变形过程中的动态再结晶行为进行了模拟和验证。结果表明:该合金的流变应力随着温度的降低和应变速率的升高而增大;结合元胞自动机模拟结果分析得,在β单相区内该合金动态再结晶体积分数与变形温度成正比,而与应变速率成反比。  相似文献   

9.
利用Gleeble-1500型热模拟机,在应变速率为0.01~1s-1、变形温度为593~653K的变形条件下,对AZ80A镁合金进行等温压缩试验.结果表明:在较高变形温度或者较低应变速率时,AZ80A镁合金更易发生动态再结晶;根据热模拟试验所得的流动应力曲线确定了AZ80A镁合金的动态再结晶临界条件,并通过动力学分析并建立了该合金的动态再结晶模型,可为该合金组织模拟技术提供理论依据.  相似文献   

10.
TC6合金等温锻造过程中晶粒尺寸的数值模拟   总被引:5,自引:2,他引:5  
通过引入一个与微观组织相关的函数对稳态流动应力模型进行修正,建立了金属材料高温变形时的稳态流动应力模型.并将该耦合微观组织参数的流动应力模型写入有限元程序中,模拟了TC6合金叶片在等温锻造过程中初生α相晶粒尺寸的变化.研究了变形工艺参数(压下量,变形温度,变形速度和摩擦因子)对零件内部初生α相晶粒尺寸的影响.  相似文献   

11.
针对某深孔连接锻件用材料6061铝合金,进行热压缩试验,获得不同应变速率和温度下的流变应力曲线,并通过数据拟合得到该合金流变应力方程;基于DEFORM-3D有限元软件对6061铝合金深孔连接锻件折叠缺陷进行模锻模拟分析。模拟结果表明,锻件成形过程形成弯曲弧面,从而造成金属压缩折叠。通过对原始坯料形状进行改进,即增加预锻,解决了折叠缺陷问题;同时对原始模具结构进行改进,即增加飞边槽,使金属更容易充满模腔;分析优化坯料温度、模具预热温度、摩擦因子等对锻件成形的影响,从而确立较佳的变形参数。试验验证结果表明,锻件成形质量较好,模拟优化较合理。  相似文献   

12.
在温度为400℃~450℃、应变速率为0.01s-1~50s-1变形条件下,研究了AZ80镁合金的塑性变形行为,讨论了变形温度及应变速率对该合金热变形行为的影响,分析了该合金管材等温挤压的有限元模拟。研究发现,AZ80镁合金晶粒大小随温度的升高而增大,随应变速率的升高而减小;在高温变形时,发生连续动态再结晶,再结晶组织相对较均匀;通过调整挤压速度2mm/s~1mm/s,使该合金挤压出口温度维持在400℃~430℃较小范围内波动,从而保证制品的组织性能和尺寸精度的稳定。  相似文献   

13.
利用Gleeble-3500热模拟试验机对TC4 ELI钛合金在两相区温度为750~950℃、应变速率为0.001~70s-1条件下进行等温恒应变速率压缩试验,分析了该合金的热变形行为,并采用Arrhenius方程和BP人工神经网络模型建立了该合金的本构关系模型。结果表明,应变速率与变形温度对TC4 ELI钛合金流变应力影响显著,流变应力随变形温度升高和应变速率降低而降低;在两相区热变形时,原始组织α相发生了不同程度的球化/动态再结晶,并且低应变速率会促进球化/动态再结晶的发生;采用Arrhenius方程和BP人工神经网络模型建立的本构方程平均误差分别为17.51%和1.36%,BP人工神经网络模型具有更高的精度,更适合用于TC4 ELI钛合金的流动应力预测。  相似文献   

14.
采用Gleeble-3500热模拟试验机对TA15钛合金进行等温压缩试验。根据试验获得的σ-ε曲线确定合金的再结晶体积分数,并对σ-ε曲线进行加工硬化处理确定再结晶临界应变,研究热变形条件对该合金再结晶临界应变和再结晶体积分数的影响。结果表明,动态再结晶临界应变随着变形温度的升高而减小,随着应变速率的增大而增大;动态再结晶体积分数随着变形温度的升高而增大,随着应变速率的增大而减小。TA15钛合金具有变形温度敏感性和应变速率敏感性,合理选择合金的变形温度和应变速率,可以控制合金性能及细化晶粒。  相似文献   

15.
利用MSC.SuperForm有限元分析软件对In718合金镦粗过程进行三维数值模拟和试验研究.分析了不同温度、摩擦和变形速率条件下等效应力-应变分布和载荷曲线。通过热模拟试验研究了In718合金不同条件下的真应力-应变曲线和微观组织。结果表明:镦粗变形分为三个变形区域,摩擦增加了变形的不均匀性和塑性变形抗力:高温锻造过程中,In718合金在基体边界上发生了动态再结晶,再结晶晶粒细小,动态再结晶进行程度随着工艺条件的不同而不同;In718合金比较合适的锻造温度为1010-1040℃之间,变形速率为0.05~0.5s^-1之间,最大变形程度可以达到70%以上。  相似文献   

16.
TC21合金是一种高强、高韧、高损伤容限型两相钛合金,具有极佳超塑成形性能。建立合理的超塑性本构关系,对了解该合金的超塑性变形特征以及超塑性成形工艺优化有着重要的指导作用。本文对TC21合金在Gleeble1500热模拟试验机上进行了超塑性等温压缩变形试验。结果表明,随着温度的升高或应变速率的降低,材料的流变应力显著降低,动态再结晶是其主要的软化机制。根据所获得的实验数据,应用BP人工神经网络建立了TC21合金的超塑性本构关系模型,较好地反映了TC21合金的超塑变形过程中流动应力的变化规律。  相似文献   

17.
基于神经网络的TC21合金本构关系模型(英文)   总被引:1,自引:0,他引:1  
本构方程是描述材料变形和有限元模拟基本信息必要的数学模型,它反映流动应力与应变、应变率和温度综合作用的高度非线性关系。基于Gleeble-1500热模拟机上进行等温压缩试验获得的实验数据,系统研究TC21钛合金的流变行为,并采用BP人工神经网络建立该合金的本构关系模型。在该模型中,输入变量为应变、应变速率和变形温度,输出变量为流动应力。与传统方法相比,利用BP人工神经网络所建立的本构关系模型能够更好地表征试验数据及描述整个变形过程。  相似文献   

18.
采用Gleeble-3800热模拟机对铸态TC18钛合金进行高温热压缩变形实验,分析该合金在变形温度1000~1150℃、应变速率0.01~10s-1和变形量为70%条件下流变应力的变化规律。确定TC18钛合金热变形激活能,建立热加工图,并通过组织观察对热加工图进行解释。综合不同应变量下的热加工图,获得了试验参数范围内热变形过程的最佳工艺参数,为铸态TC18钛合金热加工工艺优化提供理论依据。  相似文献   

19.
采用Gleeble-3800热模拟机对铸态TC18钛合金进行高温热压缩变形实验,分析该合金在变形温度1000~1150℃、应变速率0.01~10s~(-1)和变形量为70%条件下流变应力的变化规律。确定TC18钛合金热变形激活能,建立热加工图,并通过组织观察对热加工图进行解释。综合不同应变量下的热加工图,获得了试验参数范围内热变形过程的最佳工艺参数,为铸态TC18钛合金热加工工艺优化提供理论依据。  相似文献   

20.
基于TC4合金高温恒应变速率拉伸试验和微观组织观察,研究了工艺参数对TC4合金流动应力、应变速率敏感性指数、应变硬化指数和微观组织演变的影响规律,获得了TC4合金高温拉伸变形时宏观力学行为与微观组织演变的关联机制。结果表明:当变形温度为1123~1213 K、应变速率为0.1 s-1时,TC4合金的拉伸应变不超过0.7就会出现局部颈缩并导致开裂;当应变速率为0.01 s-1、变形温度为1183 K时,TC4合金的应变速率敏感性指数m值最大,归因于该变形条件下初生α相呈等轴状且较细小;当应变速率为0.01 s-1时,随着应变增加,应变硬化指数n值呈逐渐减小的趋势,归因于加工硬化和动态软化的共同作用;随着变形温度升高,初生α相由长条状转变为等轴状,随着应变速率增加,初生α相呈现出明显的取向性,不利于晶界滑动或旋转;应变对初始α相形貌和含量影响较小,但对次生α相影响显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号