首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
基于陶瓷方形扁平无引脚(QFN)封装研制出4款X波段GaAs微波单片集成电路(MMIC),包括GaAs幅相控制多功能芯片(MFC)、功率放大器、低噪声放大器、开关限幅多功能芯片.利用QFN技术将这套芯片封装在一起,组成2 GHz带宽的QFN封装收/发(T/R)组件,输出功率大于1W,封装尺寸为9 mm×9 mm×1 mm.通过提高GaAsMMIC的集成度、放大器单边加电、内部端口匹配,创新性地实现了微波T/R组件的小型化.这几款芯片中最复杂的X波段幅相控制多功能芯片集成了T/R开关、六位数字移相器、五位数字衰减器、增益放大器及串转并驱动器.在工作频段内,收发状态下,增益大于5 dB,1 dB压缩输出功率(P-1)大于7 dBm,移相均方根(RMS)误差小于2.5.,衰减均方根误差小于0.3 dB,回波损耗小于-12 dB,裸片尺寸为4.5 mm×3.0 mm×0.07 mm.  相似文献   

2.
用分析方法获取具有4个端口的双栅FET适用S参数进行设计,用微波单片集成电路技术制成增益30dB,可控增益大于65dB,二栅开关时间小于5ns的S波段单片可变增益放大器,封装后的尺寸为17.5mm×20mm×5mm。  相似文献   

3.
<正>南京电子器件研究所在研制成功MMIC的基础上,用多芯片微波组装技术,研制成功了四种接收机前端。 (1)C波段前端 由单片低噪声放大器、单片混频器及单片前置中频放大器组成。整个前端封装于20mm×25mm×5mm的管壳中构成小型模块。信号频率为C波段,中频为40~1000MHz,本振功率5mW,总增益大于30dB,噪声系数典型值3dB,最优值2.5dB。 (2)脉冲接收机前端 包括单片开关、单片低噪声放大器、单片混频器三部分,组装于20mm×25mm×5mm管壳中,重量为6克。工作频率为C波段,开关隔离度大于40dB,噪声系数小于8dB。 (3)前置放大器模块 该模块组装于9mm×l8mm×4mm微带管壳内,也工作于C波段,含有AGC功放,AGC范围0~18dB,输出功率P_(-1dB)分别为35,150,580mW三种,用户可根据需要组合成功率放大链。 (4)脉冲前置放大器模块 模块尺寸与(3)同,C波段性能为P_(-1dB)150,580mW。  相似文献   

4.
由于行波管"山丘状"功率增益特性需要补偿,提出了具有增益均衡功能的新型宽带单片放大器结构。利用FET作可调元件的嵌入式低损无源滤波网络实现了增益均衡功能。设计中采用了有别于传统的分布放大器形式,选择了高效率高增益级联型单级分布放大器结构。研制出的嵌入增益均衡滤波网络的三级级联型单级分布放大器,在6~14GHz频带范围内,仅使用5个0.25×120μmp HEMT,小信号增益15.5±1.3dB;输入输出反射损耗<-10dB;NF<8dB;频带中部引入的电调衰减幅度超过7dB。芯片面积为2.48mm×1.25mm。验证了此新型电路结构的可行性。  相似文献   

5.
基于LTCC技术的表贴式微波模块设计   总被引:2,自引:0,他引:2       下载免费PDF全文
给出了一种新型无引线表贴式微波模块设计方法。采用LTCC多层布线技术,运用垂直过渡方式实现微波信号从基板底部到表面的信号传输,完成表贴式互连结构设计。在DC-18GHz内,该表贴互连驻波小于1.5,插入损耗小于1.5dB(含测试盒插入损耗)。在此基础上设计、制作了一款表贴式X波段有源多功能模块,在9~10GHz内,测得噪声系数小于4dB,输出功率大于21dBm。尺寸仅为13×13×4.5mm3,重量小于3g。  相似文献   

6.
从行波放大器设计理论出发,研制了一款基于低噪声GaAs赝配高电子迁移率晶体管(PHEMT)工艺设计的2~20 GHz单片微波集成电路(MMIC)宽带低噪声放大器。该款放大器由九级电路构成。为了进一步提高放大器的增益,采用了一个共源场效应管和一个共栅场效应管级联的拓扑结构,每级放大器采用自偏压技术实现单电源供电。测试结果表明,本款低噪声放大器在外加+5 V工作电压下,能够在2~20 GHz频率内实现小信号增益大于16 dB,增益平坦度小于±0.5 dB,输出P-1 dB大于14 dBm,噪声系数典型值为2.5 dB,输入和输出回波损耗均小于-15 dB,工作电流仅为63 mA,低噪声放大器芯片面积为3.1 mm×1.3 mm。  相似文献   

7.
基于90 nm GaAs赝配高电子迁移率晶体管(PHEMT)工艺设计并制备了一款2~18 GHz的超宽带低噪声放大器(LNA)单片微波集成电路(MMIC)。该款放大器具有两级共源共栅级联结构,通过负反馈实现了超宽带内的增益平坦设计。在共栅晶体管的栅极增加接地电容,提高了放大器的高频输出阻抗,进而拓宽了带宽,提高了高频增益,并降低了噪声。在片测试结果表明,在5 V单电源电压下,在2~18 GHz内该低噪声放大器小信号增益约为26.5 dB,增益平坦度小于±1 dB,1 dB压缩点输出功率大于13.5 dBm,噪声系数小于1.5 dB,输入、输出回波损耗均小于-10 dB,工作电流为100 mA,芯片面积为2 mm×1 mm。该超宽带低噪声放大器可应用于雷达接收机系统中,有利于接收机带宽、噪声系数和体积等的优化。  相似文献   

8.
基于90 nm栅长的InP高电子迁移率晶体管(HEMT)工艺,研制了一款工作于130 ~140 GHz的MMIC低噪声放大器(LNA).该款放大器采用三级级联的双电源拓扑结构,第一级电路在确保较低的输入回波损耗的同时优化了放大器的噪声,后两级则采用最大增益的匹配方式,保证了放大器具有良好的增益平坦度和较小的输出回波损耗.在片测试结果表明,在栅、漏极偏置电压分别为-0.25 V和3V的工作条件下,该放大器在130~ 140 GHz工作频带内噪声系数小于6.5 dB,增益为18 dB±1.5 dB,输入电压驻波比小于2:1,输出电压驻波比小于3:1.芯片面积为1.70 mm×1.10 mm.该低噪声放大器有望应用于D波段的收发系统中.  相似文献   

9.
利用90-nm InAlAs/InGaAs/InP HEMT工艺设计实现了两款D波段(110~170 GHz)单片微波集成电路放大器。两款放大器均采用共源结构,布线选取微带线。基于器件A设计的三级放大器A在片测试结果表明:最大小信号增益为11.2 dB@140 GHz,3 dB带宽为16 GHz,芯片面积2.6×1.2 mm2。基于器件B设计的两级放大器B在片测试结果表明:最大小信号增益为15.8 dB@139 GHz,3dB带宽12 GHz,在130~150 GHz频带范围内增益大于10 dB,芯片面积1.7×0.8 mm2,带内最小噪声为4.4 dB、相关增益15 dB@141 GHz,平均噪声系数约为5.2 dB。放大器B具有高的单级增益、相对高的增益面积比以及较好的噪声系数。该放大器芯片的设计实现对于构建D波段接收前端具有借鉴意义。  相似文献   

10.
给出了一种新型高功率微波模式转换天线,该天线将同轴插板式模式转换器和一种新型喇叭有机结合,可直接辐射高功率微波源输出的同轴TEM模或TM01模,具有结构尺寸小、口径效率高、轴向辐射、容易实现等优点.优化设计了一个中心频率为3.8GHz的天线,长度约300mm、口径为280mm,在中心频率上增益为19dBi、反射损耗为-20dB,在3.7~ 4.1GHz的频率范围内增益大于18.7dBi、反射损耗小于-15dB.  相似文献   

11.
利用电流复用技术设计8mm频段低噪声放大器芯片,采用0.15μm GaAs PHEMT工艺,芯片尺寸为1.73mm×0.75mm×0.1mm。测试结果显示:在32~38GHz频带内,放大器增益大于21dB,噪声系数小于1.85dB,输入、输出电压驻波比小于2.5,P1 dB大于7dBm,功耗5V,28mA,采用电流复用技术比传统设计的功耗降低将近40%。  相似文献   

12.
孙昕  陈莹  陈丽  李斌 《半导体技术》2017,42(8):569-573,597
采用稳懋公司150 nm GaAs赝配高电子迁移率晶体管(PHEMT)工艺,设计了一款5 ~ 10 GHz单片微波集成电路(MMIC)低噪声放大器(LNA).该LNA采用三级级联结构,且每一级采用相同的偏压条件,电路的低频工作端依靠电容反馈,高频工作端依靠电阻反馈调节阻抗匹配,从而实现宽带匹配,芯片面积为2.5 mm×1 mm.测试结果表明,工作频率为5~10 GHz,漏极电压为2.3V,工作电流为70 mA时,LNA的功率增益达到35 dB,平均噪声温度为82 K,在90%工作频段内输入输出回波损耗优于-15 dB,1 dB压缩点输出功率为10.3 dBm,仿真结果与实验结果具有很好的一致性.  相似文献   

13.
基于共源级联放大器的小信号模型,详细分析了宽带放大器的输入阻抗特性和噪声特性。利用MOS晶体管的寄生容性反馈机理,采用TSMC公司标准0.18μmCMOS工艺设计实现了单片集成宽带低噪声放大器,芯片尺寸为0.6mm×1.5mm。测试结果表明,在3.1~5.2GHz频段内,S11<-15dB,S21>12dB,S22<-12dB,噪声系数NF<3.1dB。电源电压为1.8V,功耗为14mW。  相似文献   

14.
文中设计了一种超宽带双通道正交可切换接收模组,采用射频多功能基板和一体化集成金属化管壳的SiP(System in Package)封装方案,实现了传统微波频段多通道组件的低成本、轻小型化封装集成。该接收模组工作频带覆盖P、L、S波段近5.5倍频宽度,实现双通道接收限幅、低噪声放大、通道间正交切换和时延调制功能。经实物测试,接收模组全频带噪声系数优于1.6 dB,单通道小信号增益大于27 dB,带内增益平坦度优于+/-1.6 dB,输入输出端口驻波系数优于1.6,正交通道间相位不平衡度小于8°,幅度不平衡度小于0.8 dB,整个双通道接收模组(含金属管壳封装)外形尺寸47 mm×47 mm×5.6 mm,重量13g。  相似文献   

15.
This paper describes the performance of a Ku‐band 5‐bit monolithic phase shifter with metal semiconductor field effect transistor (MESFET) switches and the implementation of a ceramic packaged phase shifter for phase array antennas. Using compensation resistors reduced the insertion loss variation of the phase shifter. Measurement of the 5‐bit phase shifter with a monolithic microwave integrated circuit demonstrated a phase error of less than 7.5° root‐mean‐square (RMS) and an insertion loss variation of less than 0.9 dB RMS for 13 to 15 GHz. For all 32 states of the developed 5‐bit phase shifter, the insertion losses were 8.2 ± 1.4 dB, the input return losses were higher than 7.7 dB, and the output return losses were higher than 6.8 dB for 13 to 15 GHz. The chip size of the 5‐bit monolithic phase shifter with a digital circuit for controlling all five bits was 2.35 mm × 1.65 mm. The packaged phase shifter demonstrated a phase error of less than 11.3° RMS, measured insertion losses of 12.2 ± 2.2 dB, and an insertion loss variation of 1.0 dB RMS for 13 to 15 GHz. For all 32 states, the input return losses were higher than 5.0 dB and the output return losses were higher than 6.2 dB for 13 to 15 GHz. The size of the packaged phase shifter was 7.20 mm × 6.20 mm.  相似文献   

16.
基于In GaP/GaAs HBT工艺设计了一款工作在1. 8 GHz的三级Doherty功率放大器,第一、二级为驱动级,第三级为Doherty放大器。通过分析Doherty结构,在原有基础上重新设计Doherty电路,使用LC元件替代微带线,减小功率分配网络与合路匹配网络的面积,进而缩小整体电路的面积。将输入、输出匹配网络及功分、合路部分集成至基板上,整体封装尺寸5 mm×5 mm。测试结果表明,芯片输入、输出回波损耗优于-15 d B,放大器整体增益优于33 d B,3 d B压缩点输出功率35 d Bm,其中第三级Doherty放大器峰值功率附加效率(PAE) 47. 9%,8 d B回退点的功率附加效率32. 7%。  相似文献   

17.
介绍了一种采用0.15μm GaAs PHEMT工艺设计加工的2~20 GHz宽带单片放大器,为了提高电路的整体增益和带宽,在设计电路时采用两级级联分布式结构。此种电路结构不仅能够增加整体电路的增益和带宽,还可以提高电路的反向隔离,获得更低的噪声系数。利用Agilent ADS仿真设计软件对整体电路的原理图和版图进行仿真优化设计。后期电路在中国电子科技集团公司第十三研究所砷化镓工艺线上加工完成。电路性能指标:在2~20 GHz工作频率范围内,小信号增益>13.5 dB;输入输出回波损耗<-9 dB;噪声系数<4.0 dB;P-1>13 dBm。放大器的工作电压5 V,功耗400 mW,芯片面积为3.00 mm×1.6 mm。  相似文献   

18.
A monolithic microwave integrated circuit (MMIC) chip set consisting of a power amplifier, a driver amplifier, and a frequency doubler has been developed for automotive radar systems at 77 GHz. The chip set was fabricated using a 0.15 µm gate‐length InGaAs/InAlAs/GaAs metamorphic high electron mobility transistor (mHEMT) process based on a 4‐inch substrate. The power amplifier demonstrated a measured small signal gain of over 20 dB from 76 to 77 GHz with 15.5 dBm output power. The chip size is 2 mm × 2 mm. The driver amplifier exhibited a gain of 23 dB over a 76 to 77 GHz band with an output power of 13 dBm. The chip size is 2.1 mm × 2 mm. The frequency doubler achieved an output power of –6 dBm at 76.5 GHz with a conversion gain of ?16 dB for an input power of 10 dBm and a 38.25 GHz input frequency. The chip size is 1.2 mm × 1.2 mm. This MMIC chip set is suitable for the 77 GHz automotive radar systems and related applications in a W‐band.  相似文献   

19.
采用E-mode 0.25um GaAs pHEMT工艺,2.0mm × 2.0mm 8-pin双侧引脚扁平封装,设计了一款应用于S波段的噪声系数低于0.5dB的低噪声放大器。通过采用共源共栅结构、有源偏置网络和多重反馈网络等技术改进了电路结构,该放大器具有低噪声,高增益,高线性等特点,是手持终端应用上理想的一款低噪声放大器。测试结果表明在2.3-2.7GHz内,增益大于18dB,输入回波损耗小于-10dB,输出回波损耗小于-16dB,输出三阶交调点大于36dB。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号