首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
唐俊  王同庆  徐百坤 《声学技术》2007,26(3):367-370
在消声水池中对直径范围为2cm~5cm的钢球进行了回声测量。对长脉冲和短脉冲入射声信号的回声信号进行了分析比较。研究了目标的弹性作用在这两种情况下对回声的影响。通过对标准钢球回声测量结果与解析计算结果的比较,检验了消声水池目标回声测量的精度,并为其他非标准目标回声测量提供对比标定的依据。  相似文献   

2.
雷达目标的散射特征可用它的脉冲响应来表示,且通常散射存在的位置与散射产生的时间之间是一一对应的。但当目标比较复杂时,目标的脉冲响应中不仅有镜面散射产生的回波,还有多个散射相互作用产生的回波(即多径效应),这两种回波用我们通常的频谱、功率谱是无法区别的,但用双谱却能将它们加以区别,因而双谱能揭露隐藏在目标回波中的某些特征,利用这些特征可实现目标识别。本文研究了双谱特征的提取以及利用双谱特征进行目标识别的问题,并对实测的四种地面目标进行了识别实验,得到了较好的识别结果,从而证明了利用雷达回波的双谱特征进行目标识别是可行的。这也是利用目标回波的高阶谱进行特征提取和实现目标识别想法的一次尝试。  相似文献   

3.
Abstract

Coherent detection has been used to measure enhanced back-scatter from a range of rough surfaces and particle suspensions. Strong enhancement peaks have been observed from suspensions of monodisperse spheres at concentrations as low as 0.2%. This low-density regime has not been accessible to earlier (direct-detection) techniques. The possibility of using measurements of the enhancement peak to characterize rough surfaces or to size particles is discussed and the cross-polar returns from a tutorial target are also measured.  相似文献   

4.
This study introduces a novel aspect and polarisation invariant radar target classification method based on the use of multiple signal classification (MUSIC) algorithm for feature extraction. In the suggested method, for each candidate target at each designated reference aspect, feature matrices called `MUSIC spectrum matrices (MSMs)? are constructed using the target?s scattered data at different late-time intervals. An individual MSM corresponds to a map of a target?s natural resonance-related power distribution over the complex frequency plane under the chosen aspect angle/late-time interval conditions. The collection of these feature matrices is used first to determine the best late-time interval for optimal feature extraction. Then, the MSM of a target, which are computed over the optimal time interval at all reference aspects, are superposed to obtain the `fused MUSIC spectrum matrix (FMSM)'. The FMSM of a target is its main classifier feature in the proposed method as the aspect dependency of an FMSM is highly reduced because of its multi-aspect construction process. The suggested method is demonstrated for both simple and complex target geometries such as conducting spheres, dielectric spheres and small-scale aircraft targets with high accuracy rates even for low SNR values using feature fusion at only a few different reference aspects.  相似文献   

5.
Experimental results are presented from a series of hypervelocity impact tests on simulated comet and asteroid materials for the purpose of characterizing their response to hypervelocity kinetic energy impacts. Nine tests were conducted at the Air Force Arnold Engineering Development Center (AEDC) S1 Range Facility on ice, rock, and iron target samples using a spherical 2.39 mm diameter aluminum impactor at impact velocities of from 7.6 to 8.4 km/sec. The test objectives were to collect target response phenomenology data on cratering, momentum deposition and enhancement, target fragmentation, and material response under hypervelocity impact loading conditions. A carefully designed ballistic pendulum was used to measure momentum deposition into the targets. Observations and measurements of the impacted samples provide important insights into the response of these materials to kinetic energy impacts, especially in regards to unexpectedly large measured values of momentum enhancement to some of the targets. Such information is required to allow us to successfully deflect or fragment comets or asteroids which might someday be detected on collision trajectories with Earth.  相似文献   

6.
A broadband all-optical ultrasound transducer has been designed, fabricated, and evaluated for high- frequency ultrasound imaging. The device consists of a 2-D gold nanostructure imprinted on top of a glass substrate, followed by a 3 microm PDMS layer and a 30 nm gold layer. A laser pulse at the resonance wavelength of the gold nanostructure is focused onto the surface for ultrasound generation, while the gold nanostructure, together with the 30 nm thick gold layer and the PDMS layer in between, forms an etalon for ultrasound detection, which uses a CW laser at a wavelength far from resonance as the probing beam. The center frequency of a pulse-echo signal recorded in the far field of the transducer is 40 MHz with -6 dB bandwidth of 57 MHz. The signal to noise ratio (SNR) from a 70 microm diameter transmit element combined with a 20 microm diameter receive element probing a near perfect reflector positioned 1.5 mm from the transducer surface is more than 10 dB and has the potential to be improved by at least another 40 dB. A high-frequency ultrasound array has been emulated using multiple measurements from the transducer while mechanically scanning an imaging target. Characterization of the device's optical and acoustical properties, as well as preliminary imaging results, strongly suggest that all-optical ultrasound transducers can be used to build high-frequency arrays for real-time high-resolution ultrasound imaging.  相似文献   

7.
Penetration experiments were conducted at the plasma accelerator test facility of the LRT/TUM. Thin aluminium sheets (8 to 125 μm thick) were impacted and penetrated by glass spheres with diameters of 20 to 60 μm at velocities between 10 and 15 km/s. In earlier experiments similar impacts on semi-infinite targets were analyzed and a method was developed to quantitatively measure the electrical charge contained in the impact plasma. This method has been extended to impacts on thin targets which were perforated. The electrical charges were measured on both sides of the target together with the velocity and the diameter of the projectile. Sensors behind the target detected the light from the penetration itself as well as from the debris plume. These experiments were conducted with a modular target system, which was designed to assure a constant accuracy, while significant parameters were varied. These experiments offer a new method for the determination of the projectile diameter.  相似文献   

8.
The cymbal is a miniaturized class V flextensional transducer that was developed for use as a shallow water sound projector and receiver. Single elements are characterized by high Q, low efficiency, and medium power output capability. Its low cost and thin profile allow the transducer to be assembled into large flexible arrays. Efforts were made to model both single elements and arrays using the ATILA code and the integral equation formulation (EQI). Millimeter size microprobe hydrophones (BBs) have been designed and fabricated from miniature piezoelectric hollow ceramic spheres for underwater applications such as mapping acoustic fields of projectors, and flow noise sensors for complex underwater structures. Green spheres are prepared from soft lead zirconate titanate powders using a coaxial nozzle slurry process. A compact hydrophone with a radially-poled sphere is investigated using inside and outside electrodes. Characterization of these hydrophones is done through measurement of hydrostatic piezoelectric charge coefficients, free field voltage sensitivities and directivity beam patterns. Electronic Publication  相似文献   

9.
The spatial resolution of high-frequency ultrasound (HFU, >20 MHz) imaging systems is usually determined using wires perpendicular to the beam. Recently, two tissue-mimicking phantoms (TMPs) were developed to estimate three-dimensional (3-D) resolution. Each TMP consists of nine 1-cm-wide slabs of tissue-mimicking material containing randomly distributed anechoic spheres. All anechoic spheres in one slab have the same dimensions, and their diameter is increased from 0.1 mm in the first slab to 1.09 mm in the last. The scattering background for one set of slabs was fabricated using 3.5-μm glass beads; the second set used 6.4-μm glass beads. The ability of a HFU system to detect these spheres against a speckle background provides a realistic estimation of its 3-D spatial resolution. In the present study, these TMPs were used with HFU systems using single-element transducers, linear arrays, and annular arrays. The TMPs were immersed in water and each slab was scanned using two commercial imaging systems and a custom HFU system based on a 5-element annular array. The annular array had a nominal center frequency of 40 MHz, a focal length of 12 mm, and a total aperture of 6 mm. A synthetic-focusing algorithm was used to form images with an increased depth-of-field. The penetration depth was increased by using a linear-chirp signal spanning 15 to 65 MHz over 4 μs. Results obtained with the custom system were compared with those of the commercial systems (40-MHz probes) in terms of sphere detection, i.e., 3-D spatial resolution, and contrast-to-noise ratio (CNR). Resulting B-mode images indicated that only the linear-array transducer failed to clearly resolve the 0.2-mm spheres, which showed that the 3-D spatial resolution of the single-element and annular-array transducers was superior to that of the linear array. The single-element transducer could only detect these spheres over a narrow 1.5 mm depth-of-field, whereas the annular array was able to detect them to depths of at least 7 mm. For any size of the anechoic spheres, the annular array excited by a chirp-coded signal provided images of the highest contrast, with a maximum CNR of 1.8 at the focus, compared with 1.3 when using impulse excitation and 1.6 with the single-element transducer and linear array. This imaging configuration also provided CNRs above 1.2 over a wide depth range of 8 mm, whereas CNRs would quickly drop below 1 outside the focal zone of the other configurations.  相似文献   

10.
We present a novel method for ultrasound backscatter image formation wherein lateral resolution of the target is obtained by using traveling shear waves to encode the lateral position of targets in the phase of the received echo. We demonstrate that the phase modulation as a function of shear wavenumber can be expressed in terms of a Fourier transform of the lateral component of the target echogenicity. The inverse transform, obtained by measurements of the phase modulation over a range of shear wave spatial frequencies, yields the lateral scatterer distribution. Range data are recovered from time of flight as in conventional ultrasound, yielding a B-mode-like image. In contrast to conventional ultrasound imaging, where mechanical or electronic focusing is used and lateral resolution is determined by aperture size and wavelength, we demonstrate that lateral resolution using the proposed method is independent of the properties of the aperture. Lateral resolution of the target is achieved using a stationary, unfocused, single-element transducer. We present simulated images of targets of uniform and non-uniform shear modulus. Compounding for speckle reduction is demonstrated. Finally, we demonstrate image formation with an unfocused transducer in gelatin phantoms of uniform shear modulus.  相似文献   

11.
Presents a computational solution to the ultrasonic target-dependent spectral distortion for a finite planar target (FT-SD). The FT-SD predicts the spectrum of the output signal from the receiving transducer generated in response to the insonification of a finite planar specular target, as a function of incident angle. The transducer is assumed to be operating in pulse-echo mode. The development is made via scalar diffraction theory, in terms of the angular spectrum decomposition of the acoustic source field. Numerical simulations of the FT-SD are presented for several reflector sizes and orientations, insonified by a planar circular piston transducer. Experimental verification of results for a finite square planar reflector is given for a range of reflector orientations  相似文献   

12.
根据单波束超声波测距原理,向模拟海底钴结壳微地形的水池表面发射超声波,应用自适应滤波方法可以估计超声回波信号的时延,使最小均方误差(LMS)后的回波信号与参考信号之间方差达到最小值,此刻的延时量就是渡越时间t,从而求出探头与目标之间的距离.通过计算机仿真和试验结果表明,将最小均方误差自适应时延法应用于海底微地形高程数据的测量,获得测距精度高,能够适用于海底微地形的探测.  相似文献   

13.
水声多径单阵元主动时间反转检测性能研究   总被引:1,自引:0,他引:1       下载免费PDF全文
利用时间反转(Time Reversal,TR)良好的环境宽容性以及能量聚焦性,单阵元收发合置换能器通过主动时反信号对低信噪比下目标进行检测,以经典射线理论建立海洋中声多径信道传播模型,基于理论推导了单阵元主动TR信号目标检测的可行性.从理论上对单阵元收发合置换能器主动TR的处理增益进行详细分析,推导出单阵元主动TR的...  相似文献   

14.
Highy oblique impacts into thick and thin targets   总被引:1,自引:0,他引:1  
Hypervelocity impact (HVI) tests have been conducted at the JSC Hypervelocity Impact Test Facility (HIT-F) with aluminum projectiles impacting semi-infinite (thick) and thin aluminum plates (with plate thickness to projectile diameter ratios of 6.4 and 0.14, respectively) at impact angles ranging from normal to the plate (0°) to highly oblique (88°). The targets were impacted by solid homogeneous aluminum spheres from 1 mm to 3.6 mm diameter. Results of the HVI tests were not unusual up to 65°, where impact damage is characterized as smooth craters and holes that become progressively elliptical and distended along the projectile flight path. Above 65° angles, however, a transition occurs to an irregularly shaped hole in thin materials and rough bottomed crater in thick targets. Above 80°, multiple damage sites in the targets were formed with the damage areas separated by variable distances of undamaged target surface. Analytical and numerical simulations of the impact process at oblique angles above 65° demonstrates that shock compression and release of the projectile into multiple fragments occurs before the projectile fully engages the target. The resulting projectile fragments are then responsible for the multiple impact sites observed on the targets.  相似文献   

15.
In photoacoustic tomography, a scanning setup or an array of transducers is usually needed to record the photoacoustic signal on a closed trajectory surrounding the region of interest. Such a measurement configuration may increase the complexity or expense of the photoacoustic tomography system. In this study, a one-channel photoacoustic tomography using time reversal invariance of photoacoustics in a chaotic cavity is proposed. In no need of the scanning setup or transducer array, the method utilizes only one fixed small-size transducer to collect the photoacoustics in the cavity. The method is verified by two-dimensional numerical simulations. Moreover, the influence of noise and the diameter of the transducer are also taken into account to verify the robustness and practicality of the proposed method. The proposed method could be helpful for improving the image quality of photoacoustic tomography using a few data channels.  相似文献   

16.
Image contrast enhancement is investigated for two-photon excitation fluorescence images of a microscopic sample that is buried underneath a turbid medium. The image contrast, which deteriorates rapidly with sample depth because of scattering loss, is enhanced by an increase in the average excitation power of the focused Gaussian (the TEM(00) mode) beam according to a compensation relation that has been derived by use of a Monte Carlo analysis of the scattering problem. A correct increase in the excitation power results in a detected fluorescence signal that remains invariant with sample depth. The scheme is demonstrated on images of DAPI-stained nuclei cells viewed underneath a suspension of 0.105-mum-diameter polystyrene spheres.  相似文献   

17.
Gudimetla VS  Riker JF 《Applied optics》2007,46(23):5608-5616
The boresight and atmospheric jitter errors in a satellite tracking experiment are currently estimated by matching the probability density function (PDF) of the received signal counts with a set of PDFs of the signal for several combinations of jitter and boresight errors and then the best choice of jitter and boresight error is accepted via the chi-square test. Here a technique that can estimate atmospheric beam jitter and boresight error directly in a satellite active tracking experiment using the moments of the returns off the satellites is proposed. That is, we use the theoretical PDF for the signal return from a small target and compute the corresponding theoretical PDF moments. We can then form a few equations from these moments with only two unknowns, namely, the jitter and boresight. Solving for the unknowns is then unambiguous and very rapid. The method is valid for small physical cross-section targets and has been verified by using simulation and experimental data. Extending the case to asymmetric jitter and asymmetric boresight is possible.  相似文献   

18.
尹涛 《振动与冲击》2016,35(4):28-34
本文提出了一种时域内的传感器附加质量影响消除方法。利用时域实测自由响应数据,通过特征系统实现算法进行模态参数识别,获得传感器附加质量影响情况下的模态参数。以实测模态参数为基准,采用信赖域和非线性最小二乘算法对考虑传感器附加质量的结构初始有限元模型参数进行识别与修正,并以修正后的有限元模型为基础预测传感器附加质量消除所引起的模态参数改变。基于振型叠加法原理建立时域内传感器附加质量影响消除的识别方程组,并结合有限元预测的模态参数改变反演传感器附加质量影响消除情况下的时域响应。通过对一个实验室两端夹支梁模型实测时域响应中传感器附加质量影响消除进行研究,对所提出的方法进行验证。  相似文献   

19.
Quantitative ultrasound (QUS) imaging techniques based on ultrasonic backscatter have been used successfully to diagnose and monitor disease. A method for improving the contrast and axial resolution of QUS parametric images by using the resolution enhancement compression (REC) technique is proposed. Resolution enhancement compression is a coded excitation and pulse compression technique that enhances the ?6-dB bandwidth of an ultrasonic imaging system. The objective of this study was to combine REC with QUS (REC-QUS) and evaluate and compare improvements in scatterer diameter estimates obtained using the REC technique to conventional pulsing methods. Simulations and experimental measurements were conducted with a single-element transducer (f/4) having a center frequency of 10 MHz and a ?6-dB bandwidth of 80%. Using REC, the -6-dB bandwidth was enhanced to 155%. Images for both simulation and experimental measurements contained a signal-to-noise ratio of 28 dB. In simulations, to monitor the improvements in contrast a software phantom with a cylindrical lesion was evaluated. In experimental measurements, tissue-mimicking phantoms that contained glass spheres with different scatterer diameters were evaluated. Estimates of average scatterer diameter in the simulations and experiments were obtained by comparing the normalized backscattered power spectra to theory over the ?6-dB bandwidth for both conventional pulsing and REC. Improvements in REC-QUS over conventional QUS were quantified through estimate bias and standard deviation, contrast-to-noise ratio, and histogram analysis of QUS parametric images. Overall, a 51% increase in contrast and a 60% decrease in the standard deviation of average scatterer diameter estimates were obtained during simulations, while a reduction of 34% to 71% was obtained in the standard deviation of average scatterer diameter for the experimental results.  相似文献   

20.
Absolute distance measurement based on optical feedback using a single-frequency Yb:Er glass laser is demonstrated via the combination of heterodyne detection and frequency sweep. The technique allows for the enhancement of the sensitivity of the laser response to self-mixing thanks to resonant excitation close to the relaxation-oscillation frequency peak. The experimental results on noncooperative targets are in good agreement with the theory, and the shape of the resulting signal is analyzed in both the temporal and the frequency domains considering the specific dynamic of the class B solid-state laser. Suggestions are provided for further improvements on the signal processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号