首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study reports applicability of upflow anaerobic sludge blanket (UASB) process to treat the leachate from a municipal landfill located in Delhi. A laboratory scale reactor was operated at an organic loading rate of 3.00 kg chemical oxygen demand (COD)/m(3) d corresponding to a hydraulic retention time (HRT) of 12 h for over 8 months. The effect of toxicity of leachate, and feed composition on the treatability of leachate was evaluated. Average COD of the leachate, during the study period varied between 8,880 and 66,420 mg/l. Toxicity of the leachate used during a period of 8 months varied from LC50 1.22 to 12.35 for 96 h. The removal efficiency of soluble COD ranged between 91 and 67% for fresh leachate and decreased drastically from 90 to 35% for old leachate having high toxicity. The efficiency varied from 81 to 65%. The reactor performed more efficiently for the treatment of fresh leachate (less toxic, LC50 11.64, 12.35, and 12.15 for 96 h) as compared with old leachate (more toxic, LC50 1.22 for 96 h). Toxicity of the leachate affected its treatment potential by the UASB.  相似文献   

2.
Biological pre-treated landfill leachates of Djebel Chakir contains some macromolecular organic substances that are resistant to biological degradation. The aim of the present work is to assess the feasibility of removing refractory organic pollutants in biological pre-treated landfill leachate by solar photocatalyse process. Leachate pollutant contents are studied to assess their contribution to leachate pollution and their treatability by solar photocatalyse process. Phenol is chosen as model of pollutants, to evaluate its removal and the efficiency of the photocatalytic system. The experiments were carried out in suspended photocatalytic reactor, using TiO2 Degussa P25, under sunlight illumination (UV-A: 15-31 W/cm2). Under optimum operational conditions, applied to single reactant (phenol), the system presents a TOC removal of 90% (the degradation follows a first-order kinetic). Based on the TOC removal, the results shows that the degradation of biological pre-treated leachate follows a zero-order kinetic. After 5 h of sunlight exposure, 74% of COT is removed. The TOC removal is the best without any correction of the pH and at the TiO2 concentration of 2.5 g/L. The photocatalytic degradation of organic contaminants as well as the formation and disappearance of the by-products were followed by GC/MS. The solar photocatalysis processes induce several modifications of the matrix leading to more biodegradable forms: all the remaining and new compounds generated after the biological pre-treatment of leachate are degraded and other types of organics appear, mainly carboxylic acid, aliphatic hydrocarbons and phtalic acids.  相似文献   

3.
A bench-scale SBR was operated for almost three years in an attempt to optimise the treatment of leachates generated in old landfill. The results of the first two years were used to design a monitoring and control system based on artificial intelligence concepts. Nitrogen removal was optimized via the nitrite shortcut. Nitrification and N removal were usually higher than 98% and 90%, respectively, whereas COD (of the leachate) removal was approximately 30-40%. The monitoring and control system was demonstrated capable of optimizing process operation, in terms of phase length and external COD addition, to the varying loading conditions. Using the control system developed, a significant improvement of the process was obtained: COD and N load were increased (HRT decrease) and a significant decrease (approximately 34%) of the ratio of COD added to N leachate content was observed.  相似文献   

4.
Landfill leachate of Hong Kong was first treated by the upflow anaerobic sludge blanket (UASB) process. At 37 degrees C, pH 7.1-8.5 and a HRT of 5.1-6.6 days, the process removed 66-90% of COD in the leachate for loading rates of 1-2.4 g-COD/l day depending on the strength of landfill leachate. The final effluent contained 1440-1910 mg-COD/l and 70-91 mg-BOD/l. About 92.5% of the total COD removed was converted to methane and the rest was converted to biomass with an average net growth yield of 0.053 g-VSS/g-COD-removed. The granules developed in the UASB reactor were 0.5-1.5 mm in size and exhibited good settleability. The UASB effluent was then further polished by two oxidation processes. The UASB-ozonation process removed 93.0% of the 12900 mg/l of COD from the raw leachate. The UASB-Fenton-ozonation process improved the COD removal efficiency to 99.3%. The final effluent had only 85 mg/l of COD and 10 mg/l of BOD5. Ozonation was most effectively conducted at pH 7-8 with the addition of 300 mg/l of H2O2 and for the duration of 30 min. Ozonation also significantly improved the biodegradability of the organic residues. Nearly 50% of these residues could be used as carbon source in denitrification.  相似文献   

5.
The method of enhancing the biodegradability of landfill leachate via air stripping followed by coagulation/ultrafiltration (UF) processes is introduced. In this study, the air stripping process obtained a removal efficiency of 88.6% for ammonia nitrogen (NH3-N), at an air-to-liquid ratio (A/L) of 3 300 (pH = 11) and after 18 h of stripping. The single coagulation process increased the BOD (biological oxygen demand)/COD (chemical oxygen demand) ratio by 0.089 with a FeCl3 dosage of 570 mg/L, at pH 7.0, and the single UF process increased the BOD/COD ratio from 0.049 to 0.311. However, the combination of coagulation and UF increased the BOD/COD ratio from 0.049 to 0.423, and the final BOD, COD, NH3-N, and colour of the leachate were 1 023 mg/L, 2 845 mg/L, 145 mg/L, and 2 056, respectively, when a 3 kDa molecular weight cut-off (MWCO) membrane was used at an operating pressure of 0.7 MPa. In the ultrafiltration process, the average solution flux (Jv), concentration multiple (Mc), and retention rate (R) for the COD were 107.3 L/(m^2·h), 6.3, and 84.2%, respectively.  相似文献   

6.
The Swedish ordinance banning the landfilling of organic material after 2005 has led to rapid developments towards waste incineration, while biological alternatives have been less studied. In this study, biological alternatives for enhanced methane production from residual municipal waste (the remaining waste fraction after source separation) are investigated. The strategies investigated were recirculation of leachate, recirculation of leachate with aeration, flooding of the solid bed, and enzyme addition after initial leaching in an anaerobic, batch, two-stage digestion process with recirculation of digested leachate. The degree of solubilisation of organic compounds achieved was higher for initial digestion in a two-stage anaerobic digestion system followed by the addition of cellulolytic enzymes than in the other strategies investigated. The overall net solubilisation achieved was 0.48 g COD/g VSadded corresponding to an increase of 34%. In addition, the digestion time was considerably reduced using this strategy. For the other strategies investigated the solubilisation yields obtained were similar, 0.31 g COD/g VSadded.  相似文献   

7.
This work aims to investigate removal efficiency of oxidation and coagulation/flocculation processes, to provide an effective method for the treatment of biologically pre-treated leachate. Leachate containing 985 mg L(-1) COD was treated by using three treatment schemes, i.e. oxidation, coagulation/flocculation and the combined process of coagulation/flocculation followed by oxidation. The application of single oxidation resulted in the effective removal of COD and color up to 80.4 and 83.2%, respectively. However, residual COD values lower than 200 mg L(-1) could only be achieved under intensive experimental conditions (high dosage of Ca(ClO)(2) and prolonged oxidation time). Coagulation/flocculation yielded residual COD values higher than 200 mg L(-1) even at the optimum coagulation conditions. The combined treatment by coagulation/flocculation followed by oxidation yielded final COD lower than 100 mg L(-1) at the following conditions: pre-coagulation with 250 mg L(-1) PFS (poly-ferric sulfate) and over 30-min post-oxidation, or pre-coagulation with 300 mg L(-1) PFS and over 20-min post-oxidation. Hence, pre-coagulation with PFS followed by oxidation with Ca(ClO)(2) was recommended for advanced treatment of biologically treated leachate.  相似文献   

8.
The aim of the present study was to evaluate the behaviour of vertical flow constructed wetlands to treat high strength wastewater. Influents were obtained mixing tap water with different percentages of MSW landfill leachate (5%, 10% and 20%). Phragmites australis seedlings were used as macrophytes. The reeds were nurtured during three spring months, before the start of the experimental period. Three and four days of detention time were adopted. Influent concentrations of 510-2,050 mg L(-1), 180-740 mg L(-1) and 65-260 mg L(-1) were obtained for COD, N-NH4(+) and N-NO3(-), respectively. The environmental temperature averaged around 31.0 +/- 1.4 degrees C. During the experimental period, all parameters showed an increasing removal efficiency trend. Best results in terms of COD removal were obtained for mixtures at lowest rate of landfill leachate; while, denitrification process showed an opposite behaviour; finally, the removal of ammonia nitrogen appeared to be independent upon influent concentrations. Analysis carried out on the reed tissues showed a theoretic maximum storage of TKN in the leaves of about 55 mg/g dry weight. A leachate percentage of about 35% was derived to be able to fully inhibit the growth of macrophytes.  相似文献   

9.
Electrochemical oxidation was applied to treat the effluent from bioreactor landfill with leachate recirculation, characterised as poor biodegradability and high NH3-N concentration. In this study, the effluent was electrolysed in a batch reactor with Ti/TiO2-IrO2-RuO2 anode and stainless steel cathode. The oxidation of dissolved organic matter (DOM) during electrolysis was evaluated based on the evolution of molecular weight grade, hydrophilic fractionation (humic acid, fulvic acid and hydrophilic fractions), specific ultraviolet absorbance (SUVA254) and AOX. The impact of the initial NH3-N concentration on the oxidation was discussed. The results showed that at a current density of 100 mA/cm2, electrolysis time of 1.5 h and electrode gap of 1 cm, NH3-N with an initial concentration of 1.2 g/L could be completely eliminated and 56% of COD with an initial concentration of 1.2 g/L could be removed, which illustrated that the electrolysis-produced chlorine preferentially oxidised ammonia. The electrolysis mainly resulted in the degradation of humic substances and other high molecular DOM, followed by the increase of BOD/COD ratio and decline of SUVA254 of the leachate. The current efficiencies for COD and ammonia oxidation gradually decreased during the electrolysis, with the latter obviously higher than the former. At the optimal electrolysis time of 1.5 h, NH3-N could be totally removed and the BOD/COD ratio could be enhanced to 0.3, which was also favourable to control the AOX at a reasonable level.  相似文献   

10.
In this study, the effects of low energy ultrasound irradiation on landfill leachate treatment by means of sequencing bath reactor were investigated. The aim of this work was to estimate the influence of leachate irradiation time on aerobic treatment efficiency. The sonification of the leachate was carried out in static conditions using the disintegrator UD-20. The field frequency of 22 kHz (the power output equals to 180 W) and amplitude of 12 microm was applied. The sonification time was changed in the range of 30-140 s. It was found that ultrasonic pretreatment enhances the subsequent aerobic digestion resulting in a better degradation of landfill leachate. The sonification of raw leachate leads to enhancement of COD and ammonia removal as compare to experiment without ultrasound.  相似文献   

11.
Acidogenic fermentation of organic municipal solid waste (MSW) and the bio-electricity production potential from its volatile fatty acid (VFA)-rich leachate using an air-cathode microbial fuel cell (MFC) was investigated in this study. The acidogenic fermentation of 2 kg of MSW has been carried out in a 6 L anaerobic leach-bed reactor (LBR) under mesophilic conditions (30 degrees C). Total production of 92 g VFA expressed as chemical oxygen demand (COD) in 3 L leachate mainly containing acetic, propionic, butyric, and valeric acids has been achieved with manual leachate recirculation and without pH control in 74 days of incubation. Leachate collected on day 32 was used as a feed to an air-cathode MFC after being diluted and supplemented with NaCl or NaHCO3. The maximum power density in the diluted leachate was only 5.9 W/m3, but reached up to 8.6 W/m3 upon the addition of 7 mmol/L NaCl. Increase in coulombic efficiency from 6 to 22% was also observed as a result of NaCl supplementation. On the other hand, NaHCO3 addition did not improve the power output.  相似文献   

12.
A study was undertaken to remove colour from a kraft mill's treated effluent in Kenya and determine the suitability of phosphate rock to replace wood ash during the electrochemical process. The electrochemical method alone, electrochemical combined with alum (ELCAL), wood ash leachate (ELCAS) and phosphate rock (ELPHOS) solutions at a rate of 165 to 1000 g/m3 were tested. Effluent characteristics were determined after complete removal of colour. Same reduction rates of TS (85%) and TSS (89%) were recorded by ELCAS and ELPHOS. However, ELPHOS removed more COD (86 to 91%) and more BOD (85 to 92%) than ELCAS. Furthermore, the pH of ELPHOS treated solution was 9.3, within the Kenya Local Government's allowable limit. Power reduction with ELCAS and ELPHOS varied between 53 to 73% and 49 to 69% respectively but the difference was not statistically significant. Overnight aeration further improved the quality of ELCAS and ELPHOS treated effluent, reducing BOD and COD values to 0 mg/l. ELPHOS cost ($0.29/m3) was nevertheless three times higher than that of ELCAS ($0.10/m3), mainly because of free wood ash. ELPHOS did not also increase effluent phosphorus. It was therefore recommended that various ways be explored in making ELPHOS more economical to replace ELCAS.  相似文献   

13.
Nitrogen removal efficiency of a pilot-scale system consisted of Modified Ludzack-Ettinger (MLE) followed by sulfur-utilizing denitrification (SUDNR) process was evaluated with a landfill leachate. For SUDNR, a down-flow mode sulfur packed bed reactor (SPBR) filled with sulfur and limestone particles was used. Although total nitrogen removal efficiency of the MLE process was about 80% at the recycle ratio of 4, effluent contained 350-450 mg/L NO(3-)-N. Up to a loading rate of 1.2 kg NO(3-)-N/m3-day, the SPBR could achieve complete removal of nitrate, and nitrate removal rate was kept to that level even at higher loading rate. When a COD/N ratio of MLE process was maintained at 2 instead of 4, more organics with molecular weight less than 500 were utilized for heterotrophic denitrification although denitrification was not complete with the lack of electron donors. Clogging in the SPBR, mainly by the accumulation of nitrogen gas in the pores, could easily be removed by introducing the effluent in an upward direction for 1 min at 1 hr intervals. The proposed treatment system could achieve nitrate free effluent with a slight increase in chemical cost. Furthermore, depending on further COD removal requirement after biological treatment, the proposed treatment system can be an economical solution.  相似文献   

14.
Heterogeneous catalytic ozonation (HCO) of wastewater is gaining both research and industrial interests. It is proved to be an advanced oxidation process since it involves hydroxyl radicals as oxidation species. Few studies have been carried out to test HCO in the treatment of landfill leachates. This work has been carried out to test three types of catalysts: activated carbon (AC), expanded perlite (EP) and titanium dioxide (TiO2) combined with ozone at 80 g/m3 gas concentration for the treatment of a leachate generated by Jebel Chakir landfill site near Tunis-capital of Tunisia. The work has shown a reduction in COD of about 45% and an increase in biodegradability (BOD5/COD) from 0.1 to 0.34. A catalyst concentration of 0.7 g/L was found optimal for the treatment of the leachate.  相似文献   

15.
In this study a poorly biodegradable (BOD/COD = 0.3) industrial alkaline ECF bleaching filtrate was treated using different advanced oxidation processes to evaluate their use in combined chemical-biological treatment aimed at increasing recalcitrant COD removal and improving final effluent quality. Oxidative treatments included ozonation combined with hydrogen peroxide (2, 5, 10, 20 mmol L(-1) O3/0.7, 2, 5, 10 mmol L(-1) H2O2) and photocatalysis with hydrogen peroxide (UV/2, 4 and 8 mmolL(-1) H2O2) and with TiO2 (UV/TiO2/0.7 and 4 mmol L(-1) H2O2). The O3/H2O2 process increased effluent biodegradability by up to 68% as a result of increasing BOD and decreasing COD. Increasing the O3 dose had a greater effect on biodegradability improvement and lignin and colour removal efficiencies than increasing the H2O2 dose. A combined oxidant dose of 5 mmol L(-1) O3 and 2 mmol L(-1) H2O2 resulted in 75% lignin removal, 40% colour removal and 6% carbohydrate loss without mineralizing the organic carbon. The photocatalytic processes led to a decrease in effluent biodegradability through combined decrease in BOD and increase in COD and did not result in efficient lignin or colour removal. Photocatalytic oxidation was apparently inhibited by the high chloride and COD levels in the alkaline filtrate, and may be more efficient in recalcitrant COD removal if performed after biological.  相似文献   

16.
The performance of a novel high-rate anaerobic process, the anaerobic digestion elutriated phased treatment (ADEPT) process, for treating a slurry-type piggery waste (55 g COD/L and 37 g TS/L) was investigated. The ADEPT process consists of an acid elutriation slurry reactor for hydrolysis and acidification, followed by an upflow anaerobic sludge bed reactor for methanification. This process provides stable and high system performance with short HRT (7.4 d) and better effluent quality (2 g SCOD/L and 0.68 g VSS/L) due to the alkaline pH condition for hydrolysis/acidification phase, high refractory solids removal and ammonia toxicity reduction. The optimum pH and HRT for hydrolysis/acidogenesis of the piggery waste were 9 and 5 days at both 35 degrees C and 55 degrees C conditions. The hydrolysis and acidification rate in the mesophilic reactor were 0.05 d(-1) and 0.11 d(-1), meaning that hydrolysis was a limiting step. SCOD production by the hydrolysis was about 0.26 g SCOD/g VS(fed) (3.6 g SCOD/g VS reduction). Methane production and content in the system were 0.3 L CH4/g VS(fed) (0.67 L CH4/g VS destroyed) and 80%, respectively, corresponding to 0.23 L CH4/g COD removal (@STP).  相似文献   

17.
Two-stage membrane bioreactor (MBR) system was applied to the treatment of landfill leachate from a solid waste disposal site in Thailand. The first stage anoxic reactor was equipped with an inclined tube module for sludge separation. It was followed by an aerobic stage with a hollow fiber membrane module for solid liquid separation. Mixed liquor sludge from the aerobic reactor was re-circulated back to anoxic reactor in order to maintain constant mixed liquor suspended solids (MLSS) concentration in the aerobic reactor. The removal of micro-pollutants from landfill leachate along the treatment period of 300 days was monitored. The results indicated that two-stage MBRs could remove biochemical oxygen demand (BOD), chemical oxygen demand (COD) and NH(4)(+) by 97, 87 and 91% at steady operating condition. Meanwhile organic micro-pollutant removals were 50-76%. The removal efficiencies varied according to the hydrophobic characteristic of compounds but they were improved during long-term MBR operation without sludge discharge.  相似文献   

18.
A three-stage constructed wetland for leachate treatment was monitored on a landfill at a pilot scale. The plant had been designed to achieve at least 75% nitrogen removal. NH4-N input concentration was 240 (median) up to 290 mgl(-1) and COD concentration was 455 to 511 mgl(-1), respectively. A 14 m2 vertical flow sand filter plus a 14 m2 horizontal flow sand filter followed by a 3.3 m2 vertical flow sand filter was chosen. Acetic acid was added to the horizontal flow system for denitrification. The results showed a very stable nitrification rate within the vertical flow system of 94% (median) at NH4-N loading rates of about 10 (median) up to 17 gm(-2)d(-1). Denitrification was mainly dependent on the dosing of acetic acid and could reach a maximum of 98%. One interesting effect was the production of nitrite in the horizontal flow sand filter. This could efficiently be eliminated by the subsequent vertical flow sand filter. The chosen concept proved to be very effective for nitrogen removal. In combination with a final activated carbon filter the COD effluent concentrations could be easily and safely controlled. The design of denitrification reed beds showed a further potential for optimization.  相似文献   

19.
Biofilms growing on different carrier media have a different response to the nutrients contained in wastewater. Biofilms have proven to be an alternative to the treatment of wastewater containing higher concentrations of contaminants. The main objective of this research was to compare two biofilm support media for the treatment of leachate from the anaerobic fermentation of solid wastes. The removal of organic matter and ammonia was achieved in two fixed bed biofilm reactors containing Kaldnes and Linpor support materials with specific surface areas of 490 and 270 m2/m3, respectively, and operating under the sequencing batch procedure during 204 days. The Linpor reactor achieved higher total COD removal than the Kaldnes reactor (47% and 39%, respectively). Linpor was shown to be less sensitive to influent COD changes than Kaldnes. The effluent total COD values of Kaldnes were higher than Linpor. The dissolved COD removal was 21% for both reactors. The average ammonia removal for Linpor was 72% and 42% for Kaldnes. The matrix of Linpor allows higher concentrations of microorganisms (as dry mass) than Kaldnes. The dry mass concentration was related to the "active" exposed surface area of the biofilm. This is considered to be the cause for the better performance of Linpor when compared with Kaldnes.  相似文献   

20.
This study was performed to evaluate the biodegradability of acrylonitrile wastewater, microbial inhibition effect of acrylonitrile wastewater on removal efficiency and the activity of sulphate reducing bacteria (SRB) according to COD/sulphate ratio. Acrylonitrile wastewater was hardly biodegradable in a biodegradability test, however, SRB activity was 57% for overall consumption of electron donor and it was relatively high value compared to 17% of reference test with glucose. COD removal of acrylonitrile wastewater was improved to 57% and 61% from 20% as the COD/sulphate ratio were 0.5 and 0.3 by sulphate addition to acrylonitrile wastewater. First order reaction rate constants k on organic removal of acrylonitrile wastewater were 0.001, 0.004 and 0.004 at each COD/sulphate ratio of 0.9, 0.5 and 0.3. Thus it was suggested that the activity of SRB was a significant factor for removing organics and sulphate simultaneously in acrylonitrile wastewater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号