首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
唐雪松  赵小鹏 《工程力学》2012,29(10):20-26
该文以跨尺度应变能密度因子作为裂纹扩展的控制参量, 建立了跨尺度疲劳裂纹扩展模型。疲劳破坏全过程可用该模型进行统一描述, 而不必划分成疲劳裂纹形成与扩展两个不同阶段, 采用不同的理论分别进行分析。以LY12 铝合金板为例, 采用上述模型, 精确拟合出不同循环特征下的S-N试验曲线。当考虑材料微结构的影响时, 疲劳试验数据的发散性也可拟合出来。研究表明:材料初始缺陷及微结构在疲劳过程中的演化特性, 对于构件的疲劳寿命有显著影响, 是疲劳试验数据发散的主要原因。  相似文献   

2.
Modifications are introduced to account for the differences in crack growth behavior of long and short cracks, that permit the use of the stress intensity factor. These modifications stem from the principles of fracture mechanics for small- and large-scale yielding. Short cracks can grow well below the long crack fatigue threshold range, because the short crack fatigue threshold range is smaller than that for long cracks as it is dependent on the stress level, and the plastic constraint factor. Analytical expressions are developed for these relationships, and for the fatigue crack growth rates in plane stress and plane strain, for short semi-elliptical cracks including those emanating from notches. Microstructural features are not considered. A linear approximation is used for the gradual transition from plane stress to plane strain. The model is formulated using only the readily available material properties. It is then validated using published experimental data for fatigue crack propagation rates for positive and negative stress ratios down to –2. There is reasonable agreement between the model predictions and the published experimental data for short cracks (from 0.1 to 2 mm) and long cracks.  相似文献   

3.
A fatigue crack propagation equation of reinforced concrete (RC) beams strengthened with a new type carbon fiber reinforced polymer was proposed in this paper on the basis of experimental and numerical methods. Fatigue crack propagation tests were performed to obtain the crack propagation rate of the strengthened RC beams. Digital image correlation method was used to capture the fatigue crack pattern. Finite element model of RC beam strengthened with carbon fiber reinforced polymer was established to determinate J‐integral of a main crack considering material nonlinearities and degradation of material properties under cyclic loading. Paris law with a parameter of J‐integral was developed on the basis of the fatigue tests and finite element analysis. This law was preliminarily verified, which can be applied for prediction of fatigue lives of the strengthened RC beams.  相似文献   

4.
A considerable amount of research has been carried out on the prediction of mean stress effects on fatigue crack growth in structures. Newer types of structure are now being developed for use in highly dynamic, harsh marine environments, particularly for renewable energy applications. Therefore, the extent to which mean stresses can enhance corrosion‐assisted fatigue damage in these structures needs to be better understood. A new theoretical model that accounts for mean stress effects on corrosion fatigue crack growth is proposed. The model is developed based on the relative crack opening period per fatigue cycle and by considering only the damaging portion of the stress cycle. The baseline data for the modelling exercise are the data obtained at a stress ratio of 0.1 in air and seawater tests conducted on compact tension specimens. The model is validated by comparison with experimental data and with other fatigue crack propagation models. The proposed model correlates fairly well with experimental data and the other models examined.  相似文献   

5.
The analysis of constraint effects in fatigue crack growth in multi-layer structures is discussed. The process of material separation under cyclic loading is described by a cohesive zone model (CZM) with an irreversible constitutive relationship. The traction–separation behavior does not follow a predefined path, but is dependent on the evolution of the damage dependent cohesive zone properties. A modified boundary layer model is used in simulations of fatigue crack growth along the centerline crack of the metal layer sandwiched between two elastic substrates. Fatigue crack growth is computed for a series of values of metal layer thickness under constant and variable amplitude loading conditions. The results of the computations demonstrate that certain combinations of load magnitude, layer thickness and material properties results in significant constrain effects in fatigue crack growth. The influence of these constraint effects on fatigue crack growth rates and on crack closure processes is determined. The evolutions of the traction–separation law, the accumulated and current plastic zones, as well as the stress fields during the crack propagation are discussed.  相似文献   

6.
A model for predicting the crack growth rate of an initially angled crack under biaxial loads of arbitrary direction is suggested. The model is based on a combination of both the Manson–Coffin equation for low cycle fatigue and the Paris equation for fatigue crack propagation. The model takes into consideration the change in material plastic properties in the region around the crack tip due to the stress state, together with the initial orientation of the crack and also its trajectory of growth. Predictions of crack growth rate for any mixed mode fracture is based on the results of uniaxial tension experiments.  相似文献   

7.
Repaired panels with composite patches subjected to fatigue loading may fail due to the progressive debonding between the composite patch and aluminium panel. The objective of this paper is to study the initiation and propagation of a possible fatigue debonding in the adhesive layer while the crack also growths in the panel for single-side repaired aluminium panels. For this purpose three dimensional finite elements method with a thin layer solid like interface element is employed. Fracture mechanics approach is used for the analysis of crack growth in aluminium panel and the interface elements with fatigue constitutive law for mixed mode debonding growth in the adhesive layer. A user element routine and a damage model material routine were developed to include the interface element and to simulate the initiation and propagation of damage in adhesive layer under cyclic loading. It is shown that, the debonding propagation and crack growth rate of the repaired panels depend on the composite patch material and interface bonding properties significantly. It is also shown that using of patch material with higher elastic module leads to the faster damage or debonding growth in the adhesive layer during the fatigue loading.  相似文献   

8.
The objective of this study is to predict fatigue life of anodized 7050 aluminum alloy specimens. In the case of anodized 7050-T7451 alloy, fractographic observations of fatigue tested specimens showed that pickling pits were the predominant sites for crack nucleation and subsequent failure. It has been shown that fatigue failure was favored by the presence of multiple cracks. From these experimental results, a fatigue life predictive model has been developed including multi-site crack consideration, coalescence between neighboring cracks, a short crack growth stage and a long crack propagation stage. In this model, all pickling pits are considered as potential initial flaws from which short cracks could nucleate if stress conditions allow. This model is built from experimental topography measurements of pickled surfaces which allowed to detect the pits and to characterize their sizes (depth, length, width). From depth crack propagation point of view, the pickling pits are considered as stress concentrator during the only short crack growth stage. From surface crack propagation point of view, machining roughness is equally considered as stress concentrator and its influence is taken into account during the all propagation stage. The predictive model results have been compared to experimental fatigue data obtained for anodized 7050-T7451 specimens. Predictions and experimental results are in good agreement.  相似文献   

9.
《Composites Part A》2007,38(11):2270-2282
A damage model for the simulation of delamination propagation under high-cycle fatigue loading is proposed. The basis for the formulation is a cohesive law that links fracture and damage mechanics to establish the evolution of the damage variable in terms of the crack growth rate dA/dN. The damage state is obtained as a function of the loading conditions as well as the experimentally-determined coefficients of the Paris law crack propagation rates for the material. It is shown that by using the constitutive fatigue damage model in a structural analysis, experimental results can be reproduced without the need of additional model-specific curve-fitting parameters.  相似文献   

10.
Fatigue crack growth rate data were developed at various frequencies and hold times at maximum load for A470 Class 8 steel at 538°C (1000°F) by using an accelerated test method which involves alternating test frequency and temperature. These data were consistent with fatigue crack growth rate data obtained from the same material and developed according to the ASTM specification E-647-T78. This result suggests that there is no transient effect associated with the alternating test frequency and temperature and that the accelerated testing procedure can be used to expedite the development of elevated temperature fatigue crack growth rate data at very low frequencies and long hold times. At 538°C (1000°F) fatigue crack growth properties with hold time developed from both 1T-CT and multiple-edge-craek tension specimens fall in the same scatter band on the da/dN vs ΔK plot. This result indicates the applicability of ΔK to characterize the fatigue crack growth behavior with hold time at elevated temperature. Also, the model proposed by Saxena et al. was found to successfully predict the fatigue crack growth rate properties with 28 min hold time of the A470 Class 8 rotor steel at 538°C (1000°F).  相似文献   

11.
In this paper, the influence of the residual compressive stresses induced by roller burnishing on fatigue crack propagation in the fillet of notched round bar is investigated. A 3D finite element simulation model of rolling has allowed to introduce a residual stress profile as an initial condition. After the rolling process, fatigue loading has been applied to three‐point bending specimens in which an initial crack has been introduced. A numerical predictive method of crack propagation in roller burnished specimens has also been implemented. It is based on a step‐by‐step process of stress intensity factor calculations by elastic finite element analyses. These stress intensity factor results are combined with the Paris law to estimate the fatigue crack growth rate. In the case of roller burnished specimens, a numerical modification concerning experimental crack closure has to be considered. This method is applied to three specimens: without roller burnishing, and with two levels of roller burnishing (type A and type B). In all these cases, the computational finite element predictions of fatigue crack growth rate agree well with the experimental measurements. The developed model can be easily extended to crankshafts in real operating conditions.  相似文献   

12.
A model is proposed of propagation of a fatigue crack which makes it possible to determine its growth rate at different ratios of KI and KII as well as during the variation of the stress ratio. The model can be used to determine the ratio of the stress intensity factors of the first and second kind corresponding to the threshold growth rate of the fatigue crack. The results of the calculations are compared with experimental data.Translated from Problemy Prochnosti, No. 3, pp. 3–8, March, 1990.  相似文献   

13.
Short fatigue crack propagation often determines the service life of cyclically loaded components and is highly influenced by microstructural features such as grain boundaries. A two-dimensional model to simulate the growth of these stage I-cracks is presented. Cracks are discretised by displacement discontinuity boundary elements and the direct boundary element method is used to mesh the grain boundaries. A superposition procedure couples these different boundary element methods to employ them in one model. Varying elastic properties of the grains are considered and their influence on short crack propagation is studied. A change in crack tip slide displacement determining short crack propagation is observed as well as an influence on the crack path.  相似文献   

14.
基于对高速硬切削时刀具应力和温度分布,以及刀具内部疲劳裂纹扩展仿真分析,提出一个组分含量分布和微观结构具有梯度特征的设计模型。通过韧性相的添加和梯度结构的引入,实现疲劳裂纹扩展速率的减缓,从而提高刀具寿命。采用二阶段热压烧结工艺制备出具有梯度结构的Al_2O_3-(W,Ti)C-TiN-Mo-Ni纳米复合刀具材料,并对其微观结构和力学性能进行研究。结果表明:所制备的梯度结构金属陶瓷材料表层硬度、内层的断裂韧度和抗弯强度分别达到19.258GPa,10.015MPa·m~(1/2)和1017.475MPa,满足高速硬切削刀具的性能要求。材料的断口出现韧窝和黏结相撕裂形成的断裂棱,有利于断裂韧度和抗弯强度的增强,从而提高刀具抗疲劳裂纹扩展能力。  相似文献   

15.
The evaluation of crack initiation, short-crack growth as well as crack path at microscopic scale is a crucial issue for the safety assessment of macroscopically fracture-free structural components. In the present paper, the crack propagation at the material microscale is modeled by taking into account the spatial variability of mechanical characteristics of the material as well as the local multiaxial stress field disturbance induced by inhomogeneities (inclusions or voids). By adopting some crack extension criteria under mixed mode, the short-crack path is determined. A microstructure dependence of the crack path arises in the short-crack regime, while the microstructure of the material does not influence the crack propagation for sufficiently long cracks. A mean weighted equivalent stress-intensity factor (SIF) is computed for kinked short cracks, where the range of such a SIF can be used as a key parameter dictating their fatigue crack growth rate.  相似文献   

16.
采用不同应力比条件下的16MnR钢紧凑拉伸试样,设计了三种有限元分析模型,即不考虑加载历史效应的静态裂纹扩展模型,同时考虑加载历史和裂纹闭合的动态裂纹扩展模型以及仅考虑加载历史的伪动态裂纹扩展模型,对疲劳裂纹闭合过程、裂纹尖端的应力-应变迟滞环、疲劳损伤和裂纹扩展速率进行了数值模拟与分析,进而着重探讨了加载历史和裂纹闭合影响疲劳裂纹扩展行为的交互作用机制。结果表明:对于同类分析模型,应力比越大越不容易产生裂纹闭合;而在应力比相同的情况下,加载历史引起的残余压应力对裂纹闭合有明显的促进作用。裂纹闭合效应阻碍了平均应力的松弛,减小了裂纹尖端附近的应力-应变场强度、疲劳损伤和裂纹扩展速率,而加载历史引起的残余压应力则加快了平均应力的松弛和抑制了棘轮效应。与实验结果比较发现,只有同时考虑了裂纹闭合效应和加载历史影响的动态裂纹扩展模型,才能对疲劳裂纹扩展行为进行准确、定量的模拟。  相似文献   

17.
Two fracture mechanics-based statistical models for the fatigue crack propagation of engine materials are developed. The models are applied to fatigue crack growth rate data for IN 100, a nickel-based superalloy used in F100 engine disks, at various elevated temperatures, loading frequencies and stress ratios. The lognormal and the randomized parameter models allow the incorporation of the statistical variability associated with crack growth data into the life prediction process. The statistical distributions of (i) the crack growth rate, (ii) the propagation life to reach a given crack size (iii) the crack size at any given service life have been derived. A correlation analysis is performed to compare the results of the statistical models with test data. The correlation is demonstrated to be very good.  相似文献   

18.
An existing extensive database on the isothermal and thermomechanical fatigue behaviour of high-temperature titanium alloy EVII 834 and dispersoid-strengthened aluminum alloy X8019 in SiC particle-reinforced as well as unreinv conditions was used to evaluate both the adaptability of fracture mechanics approaches to TMF and the resulting predictive capabilities of determining material life by crack propagation consideration. Selection of the correct microstructural concepts was emphasised and these concepts were, then adjusted by using data from independent experiments in order to avoid any sort of fitting. It is shown that the cyclic /-integral (δJeff concept) is suitable to predict the cyclic lifetime for conditions where the total crack propagation rate is approximately identical to pure fatigue crack growth velocity. In the case that crack propagation is strongly affected by creep, the creep-fatigue damage parameter δCF introduced by Riedel can be successfully applied. If environmental effects are very pronounced, the accelerating influence of corrosion on fatigue crack propagation can no longer implicitly be taken into account in the fatigue crack growth law. Instead, a linear combination of the crack growth rate contributions from plain fatigue (determined in vacuum) and from environmental attack is assumed and found to yield a satisfactory prediction, if the relevant corrosion process is taken into account.  相似文献   

19.
为研究制动盘服役温度载荷及材料微结构对SiC_(p)/A356复合材料热疲劳裂纹扩展行为的影响,明确其热疲劳裂纹扩展微观机理,开展SiC_(p)/A356复合材料热疲劳裂纹扩展实验。结果表明:裂纹扩展过程包括由SiC颗粒偏转作用和二次裂纹释放扩展驱动力导致的缓慢扩展阶段和主裂纹与裂纹扩展前端微损伤连接的快速扩展阶段;加热温度较低时,裂纹扩展的“台阶状”特征明显,整体扩展速率较低,裂纹宽度较小,裂纹扩展方式为颗粒断裂、轻量基体撕裂和沿界面开裂;加热温度较高时,“斜直线跃升”阶段更为明显,裂纹宽度较大且扩展速率较高,裂纹扩展以颗粒脱落以及大幅度基体撕裂为主;主裂纹总是通过选择沿SiC颗粒群或者直接穿过α-Al基体以阻力较小的方式向前扩展,Si相承载时极易发生断裂,成为裂纹扩展源,同时裂纹扩展前端的微损伤对其扩展具有引导作用。  相似文献   

20.
In contrast to metals and fine grained ceramics, fatigue in concrete and other quasibrittle materials occurs in a large fracture process zone that is not negligible compared to the structure size. This causes the fatigue to be combined with triaxial softening damage whose localization is governed by a finite material characteristic length. A realistic model applicable to both has apparently not yet been developed and is the goal of this paper. Microplane model M7, shown previously to capture well the nonlinear triaxial behavior of concrete under a great variety of loadings paths, is extended by incorporating a new law for hysteresis and fatigue degradation, which is formulated as a function of the length of the path of the inelastic volumetric strain in the strain space. The crack band model, whose band width represents a material characteristic length preventing spurious localization, is used to simulate propagation of the fatigue fracture process zone. Thus the fatigue crack with its wide and long process zone is simulated as a damage band of a finite width. For constant amplitude cycles, the model is shown to reproduce well, up to several thousands of cycles, the Paris law behavior with a high exponent previously identified for concrete and ceramics, but with a crack growth rate depending on the structure size. Good agreement with the crack growth histories and lifetimes previously measured on three-point bend beams of normal and high strength concretes is demonstrated. The calculated compliance evolution of the specimens also matches the previous experiments. The model can be applied to load cycles of varying amplitude, to residual strength under sudden overload and damage under nonproportional strain tensor variation. Application to size effect in fatigue is relegated to a follow-up paper, while a cycle-jump algorithm for extrapolation high-cycle fatigue with millions of cycles remains to be researched.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号