首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The microinjection of carbachol into the nucleus pontis oralis produces a state which is polygraphically and behaviorally similar to active sleep (rapid eye movement sleep). In the present study, using double-labeling techniques for serotonin and the protein product of c-fos (Fos), we sought to examine whether immunocytochemically identified serotonergic neurons of the raphe nuclei of the cat were activated, as indicated by their expression of c-fos, during this pharmacologically-induced behavioral state (active sleep-carbachol). Compared with control cats, which were injected with saline, active sleep-carbachol cats exhibited a significantly greater number of c-fos-expressing neurons in the raphe dorsalis, magnus and pallidus. Whereas most of the c-fos-expressing neurons in the raphe dorsalis were small, those in the raphe magnus were medium-sized and in the raphe pallidus they were small and medium-sized. The mean number of serotonergic neurons that expressed c-fos (i.e. double-labeled cells) was similar in control and active sleep-carbachol cats. These data indicate that there is an increased number of non-serotonergic, c-fos-expressing neurons in the raphe dorsalis, magnus and pallidus during the carbachol-induced state.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Physiological and pharmacological data suggest that the rostral ventromedial medulla (RVM) is an important site where integration between somatic and visceral functions might occur. The aim of the present study was to describe the interconnections between various nuclei of the rostral ventromedial medulla and thus reveal the possible anatomical basis for such functional interactions. The topography of anterogradely labelled internal projections was examined following iontophoretic microinjections of Phaseolus vulgaris leucoagglutinin (PHA-L). The results revealed that the nuclei of the rostral ventromedial medulla have strong interconnections and, to varying degrees, they also have bilateral projections into the rostral ventrolateral medulla. A particularly dense projection to widespread regions of the ventral medulla was traced from the raphe obscurus. Terminals, originating from the raphe pallidus were similarly dispersed but very low density in comparison. The focus of the projections of the gigantocellular nucleus pars ventralis and pars alpha shifted from the lateral paragigantocellular nucleus towards the RVM in rostral direction. Connections from the raphe magnus were altogether restricted to the RVM and the medial aspects of the lateral paragigantocellular nucleus. The diffuse and dense intramedullary connections of the raphe obscurus suggest that it might have an important role in coordinating the activity of rostral ventral medullary cells. The raphe pallidus and the ventral gigantocellular nuclei, areas that were innervated from widespread regions of the rostral ventral medulla but gave only limited projections there, are more likely to be involved in the direct descending control of spinal activities.  相似文献   

3.
A number of neuronal functions governed by the hypothalamic paraventricular nucleus are influenced by serotonin, and it is generally believed that the moderate density of serotonin-immunoreactive fibres and terminals within the paraventricular nucleus originates from the midbrain dorsal and median raphe nuclei. To further evaluate the intricate anatomy of projections from brain stem raphe nuclei of the rat, a combination of retrograde and anterograde tracing experiments were conducted to determine the medullary raphe nuclei projection to the paraventricular nucleus. Rhodamine-labelled latex microspheres, Cholera toxin subunit B and FluoroGold we used as retrograde tracers. Intracerebroventricular injections into the third ventricle of all retrograde tracers labelled a distinct population of neurons in the dorsal raphe situated in the subependymal stratum adjacent to the cerebral aqueduct indicating that these cells take up the tracer from the cerebrospinal fluid. Very few retrogradely labelled neurons were seen in the median raphe after i.c.v. administration of the tracers. Retrograde tracers delivered into the medial part of the paraventricular nucleus labelled no further cells in the midbrain dorsal and median raphe nuclei, whereas a substantial number of retrogradely labelled cells emerged in the pontine raphe magnus. However, when the retrograde tracers were delivered into the lateral part of the paraventricular nucleus, avoiding leakage of the tracer into the ventricle, very few labelled neurons were seen in the dorsal and median raphe, whereas the prominent labelling of raphe magnus neurons persisted. The anatomical organization of nerve fibres terminating in the area of the paraventricular nucleus originating from midbrain raphe nuclei was studied in a series of anterograde tracing experiments using the plant lectin Phaseolus vulgaris leucoagglutinin. Injections delivered into the dorsal raphe or median raphe labelled but a few fibres in the paraventricular nucleus proper. A high number of fine calibered nerve fibres overlying the ependyma adjacent to the paraventricular nucleus was, however, seen after the injections into the subependymal rostral part of the dorsal raphe. Injections delivered into the raphe magnus gave rise to a dense plexus of terminating fibres in the parvicellular parts of the paraventricular nucleus and moderately innervated the posterior magnocellular part of the paraventricular nucleus as well as the magnocellular supraoptic nucleus. Concomitant visualization of serotonin-immunoreactive neurons and retrograde FluoroGold-tracing from the paraventricular nucleus revealed that none of the serotonergic neurons of the raphe magnus projects to this nucleus, while a few of the neurons putatively projecting to the paraventricular nucleus from the median raphe are serotonergic. The current observations suggest that the raphe magnus constitute by far the largest raphe input to the paraventricular nucleus and strongly questions the earlier held view that most raphe fibres innervating the paraventricular nucleus are derived from the midbrain dorsal and median raphe. However, the source of serotonergic innervation of the paraventricular nucleus remains elusive.  相似文献   

4.
Monoclonal antibodies were generated against serotonin (5-HT) and the C-terminal portion of the neuronal form of nitric oxide synthase (nNOS), the enzyme producing nitric oxide in neurons. These antibodies were used to compare the distribution of 5-HT- and nNOS-containing neurons in the raphe nuclei of four animal species (rat, mouse, guinea pig, and cat). It was found that the rat was the only species in which the raphe nuclei contain a substantial number of nNOS-immunoreactive (IR) cell bodies. In this species and as observed by other authors, all mesencephalic raphe nuclei contained nNOS-IR cells, the largest group being located in the nucleus raphe dorsalis. The coexistence of nNOS and 5-HT immunoreactivities in these nuclei was visualized by double labeling. In the medulla, the nuclei raphe magnus and obscurus displayed a rather low number of nNOS-IR neurons. In the other species, nNOS-IR cell bodies were found in very low numbers, whatever raphe nucleus was considered. The rostral pole of the nucleus raphe dorsalis and the nuclei raphe magnus and obscurus contained a few nNOS-IR neurons which did not show any coincidence with the 5-HT neurons. In addition, nNOS-IR axons were rare. It is concluded that in the mouse, guinea pig, and cat the involvement of nitric oxide in functions subserved by 5-HT within the raphe nuclei might be minimal.  相似文献   

5.
We studied two cartilaginous fishes and described their brainstem supraspinal projections because most nuclei in the reticular formation can be identified that way. A retrogradely transported tracer, horseradish peroxidase or Fluoro-Gold, was injected into the spinal cord of Platyrhinoidis triseriata (thornback guitarfish) or Heterodontus fransisci (horn shark). We described labeled reticular cells by their position, morpohology, somatic orientation, dendritic processes, and laterality of spinal projections. Nineteen reticular nuclei have spinal projections: reticularis (r.) dorsalis, r. ventralis pars alpha and beta, r. gigantocellularis, r. magnocellularis, r. parvocellularis, r. paragigantocellularis lateralis and dorsalis, r. pontis caudalis pars alpha and beta, r. pontis oralis pars medialis and lateralis, r. subcuneiformis, r. peduncularis pars compacta, r. subcoeruleus pars alpha, raphe obscurus, raphe pallidus, raphe magnus, and locus coeruleus. Twenty nonreticular nuclei have spinal projections: descending trigeminal, retroambiguus, solitarius, posterior octaval, descending octaval, magnocellular octaval, ruber, Edinger-Westphal, nucleus of the medial longitudinal fasciculus, interstitial nucleus of Cajal, latral mesencephalic complex, periventricularis pretectalis pars dorsalis, central pretectal, ventromedial thalamic, posterior central thalamic, posterior dorsal thalamic, the posterior tuberculum, and nuclei B, F, and J. The large number of distinct reticular nuclei with spinal projections corroborates the hypothesis that the reticular formation of elasmobranches is complexly organized into many of the same nuclei that are found in frogs, reptiles, birds, and mammals.  相似文献   

6.
Neurons of cuneiform, subcuneiform, medial parabrachial, median raphe nuclei were studied. 26-47% units were found to send monosynaptic inputs to the raphe magnus nucleus, gigantocellular reticular and ventral reticular nuclei. 17-43% responded to stimulation of the inhibitory brain stem areas with excitatory-inhibitory reactions. Reciprocal distribution projections among inhibitory brain stem areas, were found.  相似文献   

7.
The distribution of galanin-immunoreactive (-ir) neurons in the medulla oblongata was mapped with light microscopic immunohistochemistry. No immunopositive perikarya were seen in untreated rats. Two days after colchicine treatment, galanin immuno-positive neurons were localized in the following areas: 1) raphe nuclei (magnus, pallidus and obscurus); 2) in various parts of the reticular formation, mainly in the territory of the catecholaminergic groups and in the peritrigeminal subdivision of the lateral reticular nucleus; 3) vagal nuclei (nucleus of the solitary tract, nucleus ambiguous); 4) two cell groups at the ventral surface of the rostro-caudal middle portion of the medulla oblongata (they do not correspond to any known demarkated anatomical nuclei, but related to the chemosensitive medullary area); 5) in the gelatinous part of the spinal trigeminal nucleus. The wide distribution of galanin neurons in the medulla support data that had been reported on the role of this peptide in various viscerosensory and autonomic mechanisms. In addition to these, galanin seems to be an important factor in the restoration of lesioned neurons (nerve growth factor-like activity). An increased galanin mRNA expression can be seen in dorsal vagal or hypoglossal motor neurons after intracranial transections of vagal or hypoglossal nerves, respectively. Transections of the olivocerebellar tract induced galanin gene expression in neurons of the contralateral inferior olive. After brainstem hemisection, galanin immunopositivity was seen in cells of the nucleus of the solitary tract due to the transection of ascending projections of this primary autonomic center in the medulla oblongata.  相似文献   

8.
The present study was undertaken to investigate firing patterns, locations, and projections to the phrenic motor nucleus of respiratory neurons in medullary raphe nuclei of rat. Experiments were performed on spontaneously breathing rats anesthetized with sodium pentobarbital. Extracellular spikes of single respiratory neurons were explored in midline medullary tegmentum. A total of 107 respiratory neurons was recorded in the raphe magnus, obscurus and pallidus. They were classified into the following eight types based on the relation of their firing patterns to the phase of respiration: (1) Inspiratory (I) throughout (n = 42); (2) I-late (n = 9); (3) I-decrementing (n = 1); (4) Pre-I (n = 2); (5) I-frequency modulated (n = 13); (6) Post-I (n = 12); (7) Expiratory (E) (n = 23) and (8) E-frequency modulated neurons (n = 5). Twenty of the 45 respiratory neurons examined were antidromically activated from the phrenic motor nucleus at the C4 spinal level with thresholds of 2-58 microA and latencies of 0.4-2.4 ms. Among the 20 neurons, 11 neurons were I-throughout, five were I-frequency modulated and four were E neurons. These results suggest that there is a population of neurons in the medullary raphe nuclei that projects to the phrenic motor nucleus at the C4 spinal level. It is possible that this projection may, in part, mediate the control of the diaphragmatic muscle motor neurons located in the C4 segments.  相似文献   

9.
Knowledge about the central innervation of the lower urinary tract is limited. The spinal cord and the pontine micturition center have been investigated most thoroughly, whereas high centers have received little attention. Pseudorabies virus (PRV), a self-amplifying and transneuronal tracer was injected into the bladder trigone of 21 Sprague-Dawley rats. The animals were killed after 72, 96, and 120 h. The whole CNS was sectioned and immunostained for PRV. CNS centers directly connected to the bladder include the intermedio lateral cell column, the central autonomic nucleus, and the nucleus intercalatus at the spinal cord levels T12-L2 and L6-S2. The raphe pallidus et magnus, the A5 nor-adrenergic area, the pontine micturition center, the locus coeruleus, the periaquaductal gray, the nucleus para- et periventricularis of the hypothalamus, the red nucleus, the medial preoptic area, and the cortex are supraspinal centers connected to the bladder. Lower urinary tract function is a complex multilevel and multineuronal interaction. It involves facilitation and inhibition at many levels of the CNS.  相似文献   

10.
Tryptophan hydroxylase (TPH) catalyzes the first step of serotonin biosynthesis in serotonergic neurons and neuroendocrine cells. Serotonin influences diverse vital physiological functions and is thought to play an important role in several human psychiatric disorders. To localize DNA element(s) important for serotonergic tissue-specific expression of TPH, 6.1 kb of the 5' flanking region of the mouse TPH gene was fused to the coding region of the E. coli lacZ gene, and expression of the resulting fusion gene was analyzed in transgenic mice. The 6.1 kb of 5' flanking sequence was able to direct the expression of a lacZ reporter gene to serotonergic tissues in six lines of transgenic mice. A high level of lacZ expression in transgenic mice carrying the fusion gene was detected in the pineal gland as well as a moderate level of lacZ expression in serotonergic brain regions such as the median and dorsal raphe nuclei, the nuclei raphe magnus and raphe pallidus. In contrast, a smaller 5' flanking sequence of 1.1 kb directed no detectable serotonergic tissue-specific lacZ expression in five lines of transgenic mice. These results presented in this paper suggest first that DNA elements critical to serotonergic tissue-specific expression reside between -6.1 kb and -1.1 kb of 5' flanking region of the mouse TPH gene, but second that this region confers a restricted tissue-specific expression.  相似文献   

11.
A knowledge of the anatomy of medullary serotonergic cells is critical to understanding local and brainstem circuits in which these cells participate. Serotonergic neurons (n = 16) were identified, as previously described (Mason [1997] J. Neurophysiol. 77:1087-1098) by their slow and steady background discharge in halothane anesthetized rats. Neurons were then intracellularly labeled with Neurobiotin and visualized with 3,3'diaminobenzidine. The validity of the physiological identification of serotonergic cells was confirmed by processing two neurons that were physiologically characterized as serotonergic for serotonin immunoreactivity; both tested cells contained immunoreactive serotonin. The dendrites and axon of each labeled cell were reconstructed by using a three-dimensional computerized system. Somata were small or medium in size and had fusiform, triangular, or multipolar shapes. The dendritic arbor was constricted with most dendrites extending for less than 500 microm from the soma. All labeled axons projected caudally and travelled in the ventrolateral medulla, either dorsal or ventral to the lateral reticular nucleus. Most cells had collaterals and/or dense axonal swellings in the nucleus reticularis gigantocellularis, nucleus reticularis magnocellularis, raphe magnus, and the ventrolateral medulla. Non-local collaterals and swellings were also observed in the nucleus reticularis gigantocellularis and in the ventrolateral medulla at all medullary levels. The results demonstrate that 1) the dendrites of serotonergic cells are restricted to raphe magnus and the ventral part of nucleus reticularis magnocellularis; and 2) serotonergic cells project to medullary nuclei that contain bulbospinal cells which project to dorsal, intermediate, and ventral horns. Serotonergic cell projections to brainstem sites may mediate the integration of sensory, autonomic, and motor modulation at the brainstem level.  相似文献   

12.
Using a retrograde tracer technique with protein horseradish peroxidase (HRP), attempts were made to determine afferent projections to the nucleus raphe dorsalis (NRD). As a control, the injection of the HRP was also made into one of the following structures adjacent to the NRD: (1) mesencephalic periaque ductal gray; (2) nucleus linearis intermedius; and (3) third cranial nucleus. The present results indicate that the NRD, particularly is rostral part, receives direct projections arising from: (1) locus coeruleus complex (locus coeruleus, locus coerulus alpha, and locus subcoeruleus); (2) parabrachial nuclei (nucleus parabrachialis lateralis and medialis); (3) nucleus laterodorsalis tegmenti; (4) griseum centrale pontis, particularly the caudal part of the nucleus incertus; (5) substantia nigra; (6) lateral habenular nucleus; (7) hypothalamic areas, particularly dorsal and lateral hypothalamic areas; (8) preoptic areas; (9) anarea dorso-lateral to the inferior olivary complex and medial to the lateral reticular nucleus; and (10) raphe nuclei; particularly nucleus linearis intermedius, centralis superior, pontis and magnus. The present findings thus confirm some previous reports on the afferent projections to the NRD described in the cat and rat, and further indicate the richness of afferent connections of the NRD. Some problems of the peroxidase technique have also been discussed.  相似文献   

13.
Microinjection of carbachol into the rostral pontine tegmentum of the cat induces a state that is comparable to naturally occurring active (REM, rapid eye movement) sleep. We sought to determine, during this pharmacologically induced behavioral state, which we refer to as active sleep-carbachol, the distribution of activated neuron within the pons and medulla using c-fos immunocytochemistry as a functional marker. Compared with control cats, which were injected with saline, active sleep-carbachol cats exhibited higher numbers of c-fos-expressing neurons in (1) the medial and portions of the lateral reticular formation of the pons and medulla, (2) nuclei in the dorsolateral rostral pons, (3) various raphe nuclei, including the dorsal, central superior, magnus, pallidus, and obscurus, (4) the medial and lateral vestibular, prepositus hypoglossi, and intercalatus nuclei, and (5) the abducens nuclei. On the other hand, the mean number of c-fos-expressing neurons found in the masseter, facial, and hypoglossal nuclei was lower in carbachol-injected than in control cats. The data indicate that c-fos expression can be employed as a marker of state-dependent neuronal activity. The specific sites in which there were greater numbers of c-fos-expressing neurons during active sleep-carbachol are discussed in relation to the state of active sleep, as well as the functional role that these sites play in generating the various physiological patterns of activity that occur during this state.  相似文献   

14.
The expression of cadherin-8 was mapped by in situ hybridization in the embryonic and postnatal mouse central nervous system (CNS). From embryonic day 18 (E18) to postnatal day 6 (P6), cadherin-8 expression is restricted to a subset of developing brain nuclei and cortical areas in all major subdivisions of the CNS. The anlagen of some of the cadherin-8-positive structures also express this molecule at earlier developmental stages (E12.5-E16). The cadherin-8-positive neuroanatomical structures are parts of several functional systems in the brain. In the limbic system, cadherin-8-positive regions are found in the septal region, habenular nuclei, amygdala, interpeduncular nucleus, raphe nuclei, and hippocampus. Cerebral cortex shows expression in several limbic areas at P6. In the basal ganglia and related nuclei, cadherin-8 is expressed by parts of the striatum, globus pallidus, substantia nigra, entopeduncular nucleus, subthalamic nucleus, zona incerta, and pedunculopontine nuclei. A third group of cadherin-8-positive gray matter structures has functional connections with the cerebellum (superior colliculus, anterior pretectal nucleus, red nucleus, nucleus of posterior commissure, inferior olive, pontine, pontine reticular, and vestibular nuclei). The cerebellum itself shows parasagittal stripes of cadherin-8 expression in the Purkinje cell layer. In the hindbrain, cadherin-8 is expressed by several cranial nerve nuclei. Results from this study show that cadherin-8 expression in the embryonic and postnatal mouse brain is restricted to specific developing gray matter structures. These data support the idea that cadherins are a family of molecules whose expression provides a molecular code for the regionalization of the developing vertebrate brain.  相似文献   

15.
The distribution of 5-HT2A receptor immunoreactivity in the brain stem was studied by means of a commercial 5-HT2A mouse monoclonal antibody against the N-terminal portion of the receptor (amino acids 1-72). The 5-HT2A immunoreactivity demonstrated in the nerve terminal or dendritic-like structures of regions of the nucleus raphe pallidus, nucleus interfascicularis, motor nucleus of the trigeminal nerve, the ventral and dorsal tegmental nuclei and the median eminence by means of double immunofluorescence procedures were shown to be associated with 5-HT immunoreactive cell body-dendritic and/or nerve terminal structures. Besides synaptic transmission the relationships are compatible with the existence of short distance volume transmission (in the microm range) in 5-HT2A mediated 5-HT communication through terminal (5-HT)-terminal (5-HT2A) or soma/dendro (5-HT)-terminal (5-HT2A) and terminal (5-HT)-dendritic (5-HT2A) interactions in discrete brain stem nuclei.  相似文献   

16.
The dorsal raphe nucleus (DRN) is an important nucleus in pain modulation. It has abundant 5-HT neurons and many other neurotransmitter and/or neuromodulator containing neurons. Its vast fiber connections to other parts of the central nervous system provide a morphological basis for its pain modulating function. Its descending projections, via the nucleus raphe magnus or directly, modulate the responses caused by noxious stimulation of the spinal dorsal horn neurons. In ascending projections, it directly modulates the responses of pain sensitive neurons in the thalamus. It can also be involved in analgesia effects induced by the arcuate nucleus of the hypothalamus. Neurophysiologic and neuropharmacologic results suggest that 5-HT neurons and ENKergic neurons in the DRN are pain inhibitory, and GABA neurons are the opposite. The studies of the intrinsic synapses between ENKergic neurons, GABAergic neurons, and 5-HT neurons within the DRN throw light on their relations in pain modulation functions, and further explain their functions in pain mediation.  相似文献   

17.
The nucleus raphe magnus (NRM) is an important descending inhibitory system for pain transmission. We tested whether clonidine, an alpha2-adrenergic agonist, and yohimbine, an alpha2-adrenergic antagonist, modulate the activity of NRM neurons using extracellular recording in a rat brainstem slice preparation. Clonidine 1-20 microM increased firing frequencies (FF) in 22 (37%) and decreased FF in 6 (10%) spontaneously active neurons. Correlation between the concentrations of clonidine and FF changes was unremarkable. Eight spontaneously active neurons (13%) showed increases followed by decreases in FF with increasing doses of clonidine. The remaining 24 neurons (40%) showed no change in FF. Yohimbine 1 microM decreased FF in 38 spontaneously active neurons (58%), whereas the remaining 27 neurons (42%) showed no change in FF. In some neurons, yohimbine antagonized the increase or decrease in FF by application of clonidine. In three silent neurons (25%), clonidine (5 or 10 microM) induced firing activity, which stopped or decreased with the increasing doses of clonidine. In the remaining nine neurons (75%), clonidine did not induce firing activity. We conclude that activation and inhibition of alpha2-adrenergic receptors of NRM neurons augments and suppresses output of the descending inhibitory pain pathway. Implications: The nucleus raphe magnus is implicated in descending control of the nociceptive processes. We found that clonidine and yohimbine increased and decreased, respectively, the firing activity of a substantial number of nucleus raphe magnus neurons. Clonidine and may facilitate and yohimbine may reduce the outflow of the descending inhibitory pathway.  相似文献   

18.
Recent neuroanatomical data suggest that the axons and terminals of serotonergic neurons of the dorsal and median raphe nuclei are morphologically and pharmacologically distinct. Here we attempted to establish a functional in vivo model of serotonergic terminals derived from these nuclei, and then carry out a preliminary comparison of their physiological and pharmacological properties. Brain microdialysis was used to monitor extracellular 5-hydroxytryptamine in the hippocampus (dorsal and median raphe innervation) and frontal cortex (preferential dorsal raphe innervation) of the anaesthetized rat. To distinguish 5-hydroxytryptamine released by terminals of dorsal raphe neurons from that released by median raphe neurons, one or other of these nuclei was stimulated electrically. Electrical stimulation of either the dorsal or median raphe nucleus evoked a release of 5-hydroxytryptamine in the hippocampus. Whereas stimulation of the dorsal raphe nucleus also released 5-hydroxytryptamine in the frontal cortex, stimulation of the median raphe nucleus did not. No release of 5-hydroxytryptamine was evoked when electrodes were located in regions bordering the dorsal raphe nucleus and the median raphe nucleus. The amounts of hippocampal 5-HT released by stimulation of the dorsal or median raphe nucleus were found to be similarly altered by a 5-hydroxytryptamine uptake inhibitor (citalopram) and calcium-free perfusion medium, and also by increasing stimulation frequency (2-10 Hz). Furthermore, the amount of 5-hydroxytryptamine released by electrical stimulation of either the dorsal raphe nucleus or median raphe nucleus was markedly reduced in rats pretreated with p-chloroamphetamine. In summary, our data show that electrical stimulation of the dorsal or median raphe nucleus releases 5-hydroxytryptamine in a regionally specific manner (hippocampus versus frontal cortex), suggesting that serotonergic nerve terminals of the dorsal and median raphe pathways were being activated selectively. Using this model, we found no differences in the responsiveness of dorsal and median raphe pathways to a specific set of physiological and pharmacological manipulations. In particular, our data suggest that the neurotoxic action of p-chloroamphetamine may not be targeted solely on serotonergic axons and terminals of the dorsal raphe nucleus but includes those of the median raphe nucleus.  相似文献   

19.
The serotonergic innervation of the hypoglossal nucleus originates from the caudal raphe nuclei. Non-serotonergic neurons in the caudal raphe nuclei also project to the hypoglossal nucleus. We employed a triple-fluorescence technique to determine whether the substance P- or the enkephalin-containing neurons in the caudal raphe nuclei that projected to the hypoglossal nucleus also contained serotonin. Rhodamine latex microspheres were injected into the hypoglossal nucleus, and then serotonin and peptide dual-immunofluorescence was performed to colocalize perikarya containing serotonin, substance P, and rhodamine microspheres; or perikarya containing serotonin, enkephalin, and rhodamine microspheres. Our results demonstrate that most substance P-containing neuronal afferents to the hypoglossal nucleus colocalize serotonin. In contrast, few enkephalin-containing neuronal afferents to the hypoglossal nucleus also contain serotonin. These data suggest that substance P projections to the hypoglossal nucleus are a subset of serotonergic projections and that limited overlap exists between the populations of enkephalinergic and serotonergic neuronal afferents to the hypoglossal nucleus. Either substance P- or enkephalin-containing somata account for a very small proportion of non-serotonergic caudal raphe projections to the hypoglossal nucleus. Finally, these data demonstrate the medial tegmental field origins of the substance P projections and the enkephalin projections to the hypoglossal nucleus.  相似文献   

20.
The rostral ventral medulla has been shown to consist of three distinct subregions: the midline or raphé region, the lateral paragigantocellular-gigantocellular region and the rostro-ventrolateral reticular nucleus. All three regions have been shown to contribute to central vaso-regulation and to project towards sympathetic preganglionic neurons of the thoracic spinal cord. Therefore it is of particular interest to describe the interconnections between the three regions and to see if local afferents reach cells which have been implicated in the regulation of descending inputs. Following injections of the anterograde tract tracer Phaseolus vulgaris leucoagglutinin into the lateral paragigantocellular nucleus or the rostroventrolateral reticular nucleus, labelled axons were traced into the medullary raphé nuclei and the contralateral rostral ventrolateral medulla. Efferents originating from both regions innervated the raphé pallidus, raphé obscurus and raphé magnus. However the distribution of terminals originating from the two regions was different in the contralateral ventrolateral medulla oblongata. The data indicate that the connection between the ipsi- and contralateral equivalents of both the lateral paragigantocellular-gigantocellular region and the rostroventrolateral reticular nucleus are stronger than the cross-connection between the ipsi- and contralateral parts of the two different regions. In the second part of the study, the existence of direct projections from the rostroventrolateral reticular nucleus and the lateral paragigantocellular-gigantocellular region onto serotonin-immunogold-labelled cells of the ventromedial medulla were investigated. The correlated light and electron microscopic analysis revealed direct synaptic contacts between axons originating from both the lateral paragigantocellular-gigantocellular region and the rostroventrolateral reticular nucleus, and serotonin-immunoreactive cells of the raphé obscurus and raphé pallidus. The results of the present light microscopic tract-tracing study revealed a different pattern of the intramedullary projection of the lateral paragigantocellular-gigantocellular region and the rostroventrolateral reticular nucleus. These data are in support of the proposed parcellation of the two cytoarchitectonically different areas of the rostral ventrolateral medulla into two functionally distinct subdivisions. Furthermore, the direct anatomical connection revealed in the present study between cells of the rostral ventrolateral and ventromedial medulla oblongata indicates the possibility that vasoregulatory effects of some cells of the rostral ventrolateral medulla oblongata might be executed via direct projections onto serotonin-immunoreactive cells of the medullary raphé nuclei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号