首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Orthogonal, flash x rays were used to observe the debris clouds produced by the hypervelocity impact of cylindrical aluminum projectiles with thin aluminum sheets or bumpers. Three major structural features were observed in the debris clouds--a front cone, a bulbous main debris cloud, and an inner cone. Inclination of the projectile at impact changed the orientation of these features and the severity of damage to the rear wall of a double-sheet structure; projectiles with the greatest inclination produced the most damage. Two experiments, using aluminum and copper as projectile and target or target and projectile, respectively, were performed to determine the source of material in each of the three structural features of the debris clouds. The front cone and main cloud were shown to consist of bumper debris while the inner cone was composed of projectile fragments.  相似文献   

2.
Selected results of tests in which 9.53-mm-diameter, 2017-T4 aluminum spheres impacted 0.25-mm- to 4.80-mm-thick, 6061-T6 aluminum sheets are presented. Impact velocities for these tests ranged from 1.98 km/s to 7.38 km/s. Flash x-rays were used to view the debris clouds produced by the impacts. As impact velocity was increased, failure of the aluminum sphere progressed through the following stages of fracture and fragmentation: (1) formation of a spall failure at its rear surface, (2) development of a detached shell of spall fragments, and (3) complete disintegration of the sphere. The threshold impact velocity for development of the spall failure in the sphere was observed to be a function of the bumper-thickness-to-projectile-diameter ratio (t/D), and to increase as the t/D ratio decreased. When the debris cloud was fully developed, the disintegrated projectile formed its dominant feature--an internal structure, composed of a front, center, and rear element, located at the front of the debris cloud. The front element was small and consisted of finely-divided projectile and bumper material. The bulk of the fragmented projectile was contained in the center element, a disc-like structure made up of a large central fragment surrounded by numerous smaller fragments. A shell of fragments, spalled from the rear of the sphere, formed the rear element. Radiographs of the debris clouds were analyzed to determine the size and size distribution of certain fragments within the cloud. The size of the large fragment was shown to be dependent on impact velocity and t/D ratio. The smaller fragments in the center element were several times larger than the fragments in the shell of spall fragments forming the rear element. Detailed analyses of fragments in the shell of spall fragments were made. The analyses indicated their median Martin's statistical diameter exhibited an orderly dependence on impact velocity and t/D ratio.  相似文献   

3.
A series of experiments has been performed to evaluate the effectiveness of a Whipple bumper shield to orbital space debris at impact velocities of 10 km/s. Upon impact by a 19 mm (0.87 mm thick, L/D 0.5) flier plate, the thin aluminum bumper shield disintegrates into a debris cloud. The debris cloud front propagates axially at velocities of 14 km/s and expands radially at a velocity of 7 km/s. Subsequent loading by the debris on a 3.2 mm thick aluminum substructure placed 114 mm from the bumper penetrates the substructure completely. However, when the diameter of the flier plate is reduced to 12.7 mm, the substructure, although damaged is not perforated. Numerical simulations performed using the multi-dimensional hydrodynamics code CTH also predict complete perforation of the substructure by the subsequent debris cloud for the larger flier plate. The numerical simulation for a 12.7 mm flier plate, however, shows a strong dependence on assumed impact geometry, i. e., a spherical projectile impact geometry does not result in perforation of the substructure by the debris cloud, while the flat plate impact geometry results in perforation.  相似文献   

4.
The significant features of debris clouds produced by the normal impact of spheres are described and compared with the features of debris clouds produced by the normal impact of nonspherical projectiles. Projectile shape and orientation at impact are shown to have a significant effect on the ability of a single-sheet bumper shield to promote the breakup of the projectile and the dispersion of the projectile fragments. The debris clouds produced by the normal impact of spheres are “relatively benign” in terms of their potential for damage to the rear wall of a spacecraft. Debris clouds produced by nonspherical projectiles contain one or more very large fragments at their leading edge that significantly threaten rear wall integrity.  相似文献   

5.
The advanced shielding concept employed for the Columbus module of the International Space Station consists of an aluminum bumper and an intermediate shield of Nextel and Kevlar-epoxy. Until recently, the lack of adequate material models for the Nextel cloth and Kevlar-epoxy has precluded the practical usage of hydrocodes in evaluating the response of these shields to hypervelocity impact threats. Recently hydrocode material models for these materials have been proposed [1,2] and the further development and completion of this model development is reported in this paper. The resulting models, now implemented in AUTODYN-2D and AUTODYN-3D, enables the coupling of orthotropic constitutive behavior with a non-linear (shock) equation of state. The model has been compared with light gas gun tests for aluminum spheres on the advanced shield at impact velocities between 3.0 and 6.5km/s [3]. Reasonable correspondence has been obtained at these impact velocities and thus the models have been used to perform preliminary assessment of predicted ballistic limits at velocities from 7 to 11km/s. The predicted ballistic limits are compared with ballistic limit curves derived on the basis that damage is proportional to projectile momentum  相似文献   

6.
The ability of computations to model characteristics of hypervelocity impact is demonstrated using an algorithm for the automatic conversion of distorted finite elements to meshfree particles. The Lagrangian formulation tracks material boundaries and properties without the errors typical in an Eulerian formulation as the material traverses large distances. A computation of a sphere impacting a bumper is shown to reproduce three regions in the debris cloud that are observed in tests: a front region composed of droplets of melted projectile and target, a middle region of fragmented projectile, and a back region of spalled projectile. Additional computations reproduce the observed traits that result from variations in the projectile shape and obliquity. The computation of a projectile impacting spaced plates demonstrates the ability of the method to model the damage to the rear plate of a Whipple shield for spacecraft protection.  相似文献   

7.
铝双层板结构撞击损伤的板间距效应实验研究   总被引:1,自引:0,他引:1  
为了研究空间碎片对航天器防护结构的超高速撞击损伤特性,采用二级轻气炮发射球形弹丸,对铝双层板结构进行了超高速撞击实验研究.弹丸直径为3.97 mm,撞击速度分别为(2.58±0.08)km/s、(3.54±0.25)km/s和(4.35±0.11)km/s,板间距为10~100 mm.实验得到了铝双层板结构在不同撞击速度区间的后板损伤模式.结果表明,弹丸撞击速度一定时,后板弹坑分布随前后板间距的不同而不同.前板背面返溅影响区和后板弹坑分布区随板间距的增大而增大,各弹坑分布区扩散角随板间距的增大而减小.  相似文献   

8.
In this paper, an engineering fragmentation model is presented for the case of hypervelocity impact of a spherical projectile on a thin bumper plate at normal incidence. The range of impact velocities covered is the solid fragmentation regime up to the limits of complete melting of projectile and target material. The model was developed for an axisymmetric fragment cloud by consideration of the conservation laws for mass, momentum, and energy, as well as making a few assumptions on the morphology of the cloud. The fragment cloud is modeled discretely, i.e. each particle of the fragment cloud is considered separately in the analytical calculation. The model consists of mainly analytical relationships and a few empirical fit functions, where no analytical formulation was available. The model distinguishes between fragments originating from the projectile and fragments originating from the bumper plate. The projectile fragments are split into the central fragment and spall fragments. An exponential distribution function is assumed for the mass distribution of the projectile's spall fragments. The fragments from the bumper are assumed to have a uniform mass. All fragments are assumed to be of spherical shape. The fragmentation model was applied and calibrated during experiments, in which Al spheres impact on thin Al plates. The calibration experiments, performed using a two-stage light gas gun, were in the range of impact velocities between 4.8 and 6.7 km/s. In this velocity range, the model was calibrated against residual velocities measured and fragment mass distribution, which was indirectly determined by measuring the crater depth distributions in rear walls.  相似文献   

9.
In order to calibrate the output of hydrocode simulations of hypervelocity impacts on shielded gas-filled pressure vessels, Light Gas Gun impact experiments were performed. In a first step, tests were performed on so-called equivalent Whipple shield (EWS) configurations having basically the same set-up as the shielded pressure vessels (i.e. bumper thickness and - material, stand-off and backwall plate thickness and -material). Purpose was the determination of the impact conditions that lead to penetration into the backwall plate but not perforation of it or leakage through the impacted area. In a second step, impact tests on the corresponding shielded pressure vessels were performed with the same test conditions as the EWS. The purpose of the tests was the investigation whether leakage occurs when the vessel's front wall is not perforated, but just cratered. The test conditions lead to no leakage in all tests. The most important measured damage parameter was the crater depth of the deepest crater in the vessel's front wall/the backwall plate of the EWS, respectively. Hydrocode simulations were then performed to assess the capability of the numerical tool to correctly predict the damage on the impacted vessel surface. Normal impacts of aluminium spheres against shielded vessels were simulated using AUTODYN-2D, including and evaluating the effect of the static stress induced in the vessel walls by the inner pressure. Particular attention was focused on the exact determination of the maximum crater depth caused by the debris cloud impact on the vessel wall/the backwall plate of the EWS, respectively. Bumper and projectile were represented by SPH particles, the vessel shell was represented by a Lagrange grid. The results showed a very good agreement with the measured crater depths of the experiments.  相似文献   

10.
The purpose of this study is to obtain mass, spray angle and velocity distributions of fragments in debris cloud generated by oblique impacts on an aluminum alloy plate. Hypervelocity impact tests were performed with a two-stage light gas gun at Kyushu Institute of Technology. The impact angles were changed to 0°, 15°, 30°, 45° and 60°. The projectile impacted on the targets at 2 km/s. After the impact, the debris cloud was taken with flash X-rays and an ultra high-speed video camera. The fragments were then captured in a stack of polystyrene sheets. As a result, the projectile was broken up into smaller fragments by oblique impacts with the larger impact angles. Lower velocity fragments dispersed in wider spray angles according to the increase of the impact angles.  相似文献   

11.
阐述了用聚能装药销毁薄壳工程弹药的设计原则,进行了射流销毁薄壳TNT和薄壳B炸药试验。利用有限元AUTODYN-2D程序对小尺寸聚能射流冲击起爆薄壳装药进行计算,分析了大炸高下对薄壳弹药的作用效果。结果表明,小尺寸聚能射流可以在一定炸高下销毁薄壳弹药但不产生强烈的爆轰或飞散破片。  相似文献   

12.
EFP垂直侵彻靶后破片云描述模型   总被引:3,自引:0,他引:3  
针对靶后破片是影响装甲保护能力和聚能装药毁伤的主要问题,基于EFP垂直侵彻的靶后破片,建立其初始靶后破片云的数学描述模型,并在此基础上采用有限元仿真软件AUTODYN-3D对EFP垂直侵彻钢靶形成靶后破片的过程进行数值模拟。数值模拟结果与靶场实验结果进行对比,结果表明:仿真的EFP成型参数、靶后破片空间分布状态和靶板开孔特征均与实验较为吻合。因此,证明该仿真模型和所得靶后破片云初始描述模型具有较高的可信度,可以为EFP对装甲目标的毁伤评估方面提供一定的参考。  相似文献   

13.
针对靶后破片是影响装甲保护能力和聚能装药毁伤的主要问题,基于EFP垂直侵彻的靶后破片,建立其初始靶后破片云的数学描述模型,并在此基础上采用有限元仿真软件AUTODYN-3D对EFP垂直侵彻钢靶形成靶后破片的过程进行数值模拟。数值模拟结果与靶场实验结果进行对比,结果表明:仿真的EFP成型参数、靶后破片空间分布状态和靶板开孔特征均与实验较为吻合。因此,证明该仿真模型和所得靶后破片云初始描述模型具有较高的可信度,可以为EFP对装甲目标的毁伤评估方面提供一定的参考。  相似文献   

14.
Whipple shield ballistic limit at impact velocities higher than 7 km/s   总被引:3,自引:0,他引:3  
The Whipple bumper shield was the first system developed to protect space structures against Meteoroids and Orbital Debris (M/OD), and it is still extensively adopted. In particular, Whipple shields are used to protect several elements of the International Space Station, although the most exposed areas to the M/OD environment are shielded by innovative low weigh and high resistance systems.

Hydrocode simulations were used to predict the ballistic limit of a typical aluminium Whipple shield configuration for space applications in the impact velocity range not accessible by the available experimental techniques. The simulations were carried out using the AUTODYN-2D and the PAMSHOCK-3D codes, allowing to couple the gridless Smoothed Particles Hydrodynamics with the Lagrange grid-based techniques. The global damage of the structure after the impact was determined with particular attention to the back wall penetration, and the results obtained with the two hydrocodes were compared with those given by semi-empirical damage equations.

A few hypervelocity Light Gas Gun impact experiments, performed on the same shield configuration at velocities up to 7.2 km/s, were previously simulated in order to assess the capability and limitations of the two hydrocodes in reproducing the experimental results available in the lower velocity regime. The influence of material models on the numerical predictions is discussed.  相似文献   


15.
Effects of scale on debris cloud properties   总被引:1,自引:0,他引:1  
Results of tests using various thicknesses of 6061-T6 aluminum sheet and 6.35-, 9.53-, 12.70-, and 15.88-mm-diameter, 2017-T4 aluminum spheres are described. Impact velocities for these tests ranged from 3.77 to 7.38 km/s. Multiple-exposure, orthogonal-pair, flash radiographs of the debris clouds produced by the impacts were analyzed to provide quantitative data which described the size and velocity of a number of characteristic morphologic features in the debris clouds and the sizes and size distributions of fragments in the structural elements of the debris cloud.The axial and diametral velocities of these morphologic features were shown to be the same, regardless of sphere diameter, when debris clouds produced by impacts with similar bumper-thickness-to-projectile-diameter ratios and impact velocities were compared. As a result, the dimensions of these debris clouds differed only by the differences in the diameters of the spheres that produced them.An analyses of fragment sizes showed that the equivalent diameter of the large projectile fragment along the center line of the debris cloud scaled with projectile diameter; the dimensions of fragments forming the shell of spall fragments at the rear of the debris cloud did not scale with projectile diameter. The large central fragment appeared to originate from near the center of the sphere and was a part of the sphere which remained intact after all processes that worked to reduce the size of the sphere were complete. Formation of spall-shell fragments was a shock-related process which was sensitive to rate effects and other material properties that did not scale.  相似文献   

16.
All spacecraft in low orbit are subject to hypervelocity impact by meteoroids and space debris, which can in turn lead to significant damage and catastrophic failure. In order to simulate and study the hypervelocity impact of space debris on spacecraft through hypervelocity impact on AL-Whipple shield, a two-stage light gas gun was used to launch 2017-T4 aluminum alloy sphere projectiles. The projectile diameters ranged from 2.51 mm to 5.97 mm and impact velocities ranged from 0.69 km/s to 6.98 km/s. The modes of crater distribution on the rear wall of AL-Whipple shield by hypervelocity impact of AL-spheres in different impact velocity ranges were obtained. The characteristics of the crater distribution on the rear wall were analyzed. The forecast equations for crater distribution on the rear wall of AL-Whipple shield by normal hypervelocity impact were derived. The results show that the crater distribution on the rear wall is a circular area. As projectile diameter, impact velocity and shielding spacing increased, the area of crater distribution increased. The critical fragmentation velocity of impact projectile is an important factor affecting the characteristics of the crater distributions on the rear wall.  相似文献   

17.
A high-velocity impact interaction of a polyethylene projectile (15 mm diameter) and aluminium projectile (6.35 mm diameter) with string and mesh bumpers (made of steel strings of 0.5–1.0 mm in diameter) was investigated experimentally and numerically. The study was aimed on detecting the projectile fragmentation peculiarities during projectile interaction with discrete bumpers. Since polyethylene has lower penetration resistance than aluminium, the effects inherent to discrete bumper penetration into the projectile must be more obvious for polyethylene. The string bumper is a set of parallel strings lying in a plane. The geometry of the string bumper which is simpler than the geometry of the mesh one also allowed one to get more understandable distribution of fragments on a thick aluminium witness-plate which was imposed behind the studied bumper to register the results of impact interaction for further analysis. The projectile velocity varied in the range of 1.7–3.8 km/s. The geometrical properties of such bumper-projectile system were characterized by two geometrical parameters: the parameter κ characterizing the bumper discreteness and equal to cell aperture-string diameter ratio, and the parameter ? defining the average number of cells falling within the projectile diameter.  相似文献   

18.
This paper presents the results of hypervelocity impact experiments that were carried out at CISAS Impact Facility onto aluminum bumpers cooled down to −120 °C with liquid nitrogen and to −60 °C with solid carbon dioxide. The thickness of the targets was 0.8, 1, 2 and 3.17 mm, the diameter of the spherical projectiles was 1.5, 1.9, 2.3 and 2.9 mm and the impact velocity did span between 4 and 5 km/s. To establish if any temperature dependence exists in the bumpers’ impact response, two different features were analyzed: the hole size and the bumper protection capabilities. The latter property, that is related to the bumper capacity of producing debris cloud composed of fragments as fine and slow as possible, was assessed through observation of the damage patterns on witness plates and through measurements of the debris cloud tip velocity. Moreover, qualitative analyses of high-speed shadowgraphs representing the debris cloud evolution were performed. On one hand, it was found that low temperature has only minor influence on the hole diameter. On the other hand, the examination of shadowgraphs showed that the debris cloud structure varies with bumper temperature, even though it was not proved that such differences correspond to significant dissimilarities between damage patterns recorded onto witness plates.  相似文献   

19.
为研究泡沫铝板作为防护屏的Whipple防护结构抵御空间碎片超高速撞击的特性,模仿泡沫金属的生产原理建立了泡沫金属细观结构几何模型,结合自编的光滑质点流体动力学程序进行了超高速撞击数值仿真,通过与实验对比验证了模型的有效性.分别对相对密度为23.2%的理想均匀和非均匀开孔泡沫铝板作为防护屏的Whipple防护结构进行了数值仿真,得到了它们的弹道极限曲线,并与实心铝板作为防护屏的Whipple防护结构进行了对比分析.结果表明,相同面密度的泡沫铝板相对于实心铝板能够在更低的速度上将弹丸粉碎、液化及气化.泡沫铝板作为防护屏,在总体上拥有更好的防护性能;相同面密度的理想均匀泡沫铝板的防护性能总体上优于非均匀泡沫铝板.  相似文献   

20.
The results of 18 impact tests performed on Whipple shields were compared to the predicted ballistic limits of the shields in the region where the impact velocity of the threatening particle was high enough to produce melting and incipient vaporization of the particle. Ballistic limit equations developed at NASA Johnson Space Center were used to determine nominal failure thresholds for two configurations of all-aluminum Whipple shields. In the tests, 2017-T4 aluminum spheres with diameters ranging from 1.40 to 6.35 mm were used to impact the shields at impact velocities ranging from 6.94 to 9.89 km/s. Two different aluminum alloys were used for the rear walls of a simple Whipple shield. The results of 13 tests using these simple Whipple shields showed they offered better-than-predicted capability as impact velocity increased and that the strength of the rear wall material appeared to have a smaller-than-predicted effect on the shield performance. The results of five tests using three configurations of a scaled Space Station shield - a plain shield at 0 degrees, two shields with multilayer insulation in the space between the bumper and the rear wall (also at 0 degrees), and two tests with the plain shield at 45 degrees obliquity - showed that these shields met their predicted capabilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号