首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trypanothione reductase (TryR) is a key validated enzyme in the trypanothione‐based redox metabolism of pathogenic trypanosomes and leishmania parasites. This system is absent in humans, being replaced with glutathione and glutathione reductase, and as such offers a target for selective inhibition. As part of a program to discover antiparasitic drugs, the LOPAC1280 library of 1266 compounds was screened against TryR and the top hits evaluated against glutathione reductase and T. brucei parasites. The top hits included a number of known tricyclic neuroleptic drugs along with other new scaffolds for TryR. Three novel druglike hits were identified and SAR studies on one of these using information from the tricyclic neuroleptic agents led to the discovery of a competitive inhibitor (Ki=330 nM ) with an improved potency against T. brucei (EC50=775 nM ).  相似文献   

2.
Trypanothione synthetase (TryS) is essential for the survival of the protozoan parasite Trypanosoma brucei, which causes human African trypanosomiasis. It is one of only a handful of chemically validated targets for T. brucei in vivo. To identify novel inhibitors of TbTryS we screened our in-house diverse compound library that contains 62,000 compounds. This resulted in the identification of six novel hit series of TbTryS inhibitors. Herein we describe the SAR exploration of these hit series, which gave rise to one common series with potency against the enzyme target. Cellular studies on these inhibitors confirmed on-target activity, and the compounds have proven to be very useful tools for further study of the trypanothione pathway in kinetoplastids.  相似文献   

3.
Trypanothione reductase (TR) is an essential enzyme in the trypanothione-based redox metabolism of trypanosomatid parasites. This system is absent in humans and, therefore, offers a promising target for the development of selective new drugs against African sleeping sickness and Chagas' disease. Over the past two decades, a variety of nonpeptidic small-molecule ligands of the parasitic enzyme were discovered. A current goal is to decipher the binding mode of these known inhibitors in order to optimize their structures. We analyzed the binding mode of recently reported 1-(1-(benzo[b]thiophen-2-yl)cyclohexyl)piperidine (BTCP) analogues using computer modeling methods. This led us to conclude that the analogues occupy a different region of the active site than the diaryl sulfide-based class of inhibitors. A combination of the two motifs significantly increased affinity for the enzyme compared to the respective parent compounds. The newly synthesized conjugates exhibit K(ic) values for TR as low as 0.51±0.1?μM and high selectivity for the parasitic enzyme over the related human glutathione reductase (hGR), as was predicted by our molecular modeling studies. In vitro studies showed IC(50) values in the low micromolar to submicromolar range against Trypanosoma brucei rhodesiense, often in combination with low cytotoxicity against mammalian cells. Interestingly, even stronger activities were found against Plasmodium falciparum.  相似文献   

4.
Through our focused effort to discover new and effective agents against toxoplasmosis, a structure‐based drug design approach was used to develop a series of potent inhibitors of the enoyl‐acyl carrier protein (ACP) reductase (ENR) enzyme in Toxoplasma gondii (TgENR). Modifications to positions 5 and 4′ of the well‐known ENR inhibitor triclosan afforded a series of 29 new analogues. Among the resulting compounds, many showed high potency and improved physicochemical properties in comparison with the lead. The most potent compounds 16 a and 16 c have IC50 values of 250 nM against Toxoplasma gondii tachyzoites without apparent toxicity to the host cells. Their IC50 values against recombinant TgENR were found to be 43 and 26 nM , respectively. Additionally, 11 other analogues in this series had IC50 values ranging from 17 to 130 nM in the enzyme‐based assay. With respect to their excellent in vitro activity as well as improved drug‐like properties, the lead compounds 16 a and 16 c are deemed to be excellent starting points for the development of new medicines to effectively treat Toxoplasma gondii infections.  相似文献   

5.
There is an urgent need for new drugs for the treatment of tropical parasitic diseases such as human African trypanosomiasis, which is caused by Trypanosoma brucei. The enzyme trypanothione reductase (TryR) is a potential drug target within these organisms. Herein we report the screening of a 62 000 compound library against T. brucei TryR. Further work was undertaken to optimise potency and selectivity of two novel‐compound series arising from the enzymatic and whole parasite screens and mammalian cell counterscreens. Both of these series, containing either a quinoline or pyrimidinopyrazine scaffold, yielded low micromolar inhibitors of the enzyme and growth of the parasite. The challenges of inhibiting TryR with druglike molecules is discussed.  相似文献   

6.
In the search for novel inhibitors of the enzyme thymidine monophosphate kinase of Mycobacterium tuberculosis (TMPKmt), an attractive target for novel antituberculosis agents, we report herein the discovery of the first acyclic nucleoside analogues that potently and selectively inhibit TMPKmt. The most potent compounds in this series are (Z)-butenylthymines carrying a naphtholactam or naphthosultam moiety at position 4, which display K(i) values of 0.42 and 0.27 microM, respectively. Docking studies followed by molecular dynamics simulations performed to rationalize the interaction of this new family of inhibitors with the target enzyme revealed a key interaction between the distal substituent and Arg 95 in the target enzyme. The fact that these inhibitors are more easily synthesizable than previously identified TMPKmt inhibitors, together with their potency against the target enzyme, makes them attractive lead compounds for further optimization.  相似文献   

7.
8.
The search for novel compounds of relevance to the treatment of diseases caused by trypanosomatid protozoan parasites continues. Screening of a large library of known bioactive compounds has led to several drug-like starting points for further optimisation. In this study, novel analogues of the monoamine uptake inhibitor indatraline were prepared and assessed both as inhibitors of trypanothione reductase (TryR) and against the parasite Trypanosoma brucei. Although it proved difficult to significantly increase the potency of the original compound as an inhibitor of TryR, some insight into the preferred substituent on the amine group and in the two aromatic rings of the parent indatraline was deduced. In addition, detailed mode of action studies indicated that two of the inhibitors exhibit a mixed mode of inhibition.  相似文献   

9.
Casein kinase 2 (CK2) is a ubiquitous, essential, and highly pleiotropic protein kinase; its abnormally high constitutive activity is suspected to underlie its pathogenic potential in neoplasia and other relevant diseases. Previously, using different in silico screening approaches, two potent and selective CK2 inhibitors were identified by our group: ellagic acid, a naturally occurring tannic acid derivative (K(i)=20 nM) and 3,8-dibromo-7-hydroxy-4-methylchromen-2-one (DBC, K(i)=60 nM). Comparing the crystallographic binding modes of both ellagic acid and DBC, an X-ray structure-driven merging approach was taken to design novel CK2 inhibitors with improved target affinity. A urolithin moiety is proposed as a possible bridging scaffold between the two known CK2 inhibitors, ellagic acid and DBC. Optimization of urolithin A as the bridging moiety led to the identification of 4-bromo-3,8-dihydroxy-benzo[c]chromen-6-one as a novel, potent and selective CK2 inhibitor, which shows a K(i) value of 7 nM against the protein kinase, representing a significant improvement in affinity for the target compared with the two parent fragments.  相似文献   

10.
Thirty two analogues of phencyclidine were synthesised and tested as inhibitors of trypanothione reductase (TryR), a potential drug target in trypanosome and leishmania parasites. The lead compound BTCP ( 1 , 1‐(1‐benzo[b]thiophen‐2‐yl‐cyclohexyl) piperidine) was found to be a competitive inhibitor of the enzyme (Ki=1 μM ) and biologically active against bloodstream T. brucei (EC50=10 μM ), but with poor selectivity against mammalian MRC5 cells (EC50=29 μM ). Analogues with improved enzymatic and biological activity were obtained. The structure–activity relationships of this novel series are discussed.  相似文献   

11.
A dynamic combinatorial library composed of interconverting acylhydrazones has been generated and screened towards inhibition of acetylcholinesterase from the electric ray Torpedo marmorata. Starting from a small set (13) of initial hydrazide and aldehyde building blocks, a library containing possibly 66 different species was obtained in a single operation. Of all possible acylhydrazones formed, active compounds containing two terminal cationic recognition groups separated by an appropriate distance, permitting two-site binding, could be rapidly identified by using a dynamic deconvolution--screening procedure, based on the sequential removal of starting building blocks. A very potent bis-pyridinium inhibitor (K(i)=1.09 nM, alphaK(i)=2.80 nM) was selected from the process and the contribution of various structural features to inhibitory potency was evaluated.  相似文献   

12.
Many drug candidates contain a basic functional group that results in lysosomotropism--the accumulation of drug in the acidic lysosomes of a cell. When evaluating inhibitors of lysosomal enzymes, such as the cathepsins, this physical property can have a dramatic impact on the functional selectivity of the test compounds. A basic P3 substituent in cathepsin K inhibitors provides a means of achieving potent and selective enzyme inhibition. To evaluate the whole-cell selectivity of the basic cathepsin K inhibitor L-006235, we identified the irreversible pan-selective cathepsin probe BIL-DMK and used it to design whole-cell enzyme-occupancy assays. These cell-based assays showed a dramatic reduction in selectivity against cathepsins B, L, and S relative to the selectivities observed in enzyme assays. Two-photon confocal fluorescence microscopy showed punctated subcellular localization of L-006235, which colocalized with BODIPY-labelled Lysotracker, consistent with compound lysosomotropism. To address this potential problem, a series of potent cathepsin K inhibitors was developed by replacing the P2--P3 amide bond with a metabolically stable trifluoroethylamine moiety. X-ray crystallography has identified the binding of this functional group to active-site residues in cathepsin K. This modification resulted in increased potency and selectivity that allowed the removal of the basic P3 substituent. The resulting nonbasic inhibitor L-873724 is a 0.2 nM inhibitor of cathepsin K with cathepsin B, L, and S potencies that were not shifted between purified enzyme and whole-cell assays; thus indicating that this compound is not lysosomotropic. L-873724 exhibits excellent pharmacokinetics and is orally active in a monkey model of osteoporosis at 3 mg kg(-1) q.d.  相似文献   

13.
A series of highly potent substrate-analogue factor Xa inhibitors containing D-homophenylalanine analogues as the P3 residue has been identified by systematic optimization of a previously described inhibitor structure. An initial lead, benzylsulfonyl-D-hPhe-Gly-4-amidinobenzylamide (3), inhibits fXa with an inhibition constant of 6.0 nM. Most modifications of the P2 amino acid and P4 benzylsulfonyl group did not improve the affinity and selectivity of the compounds as fXa inhibitors. In contrast, further variation at the P3 position led to inhibitors with significantly enhanced potency and selectivity. Inhibitor 27, benzylsulfonyl-D-homo-2-pyridylalanyl(N-oxide)-Gly-4-amidinobenzylamide, inhibits fXa with a K(i) value of 0.32 nM. The inhibitor has strong anticoagulant activity in plasma and doubles the activated partial thromboplastin time and prothrombin time at concentrations of 280 nM and 170 nM, respectively. Compound 27 inhibits the prothrombinase complex with an IC(50) value of 5 nM and is approximately 50 times more potent than the reference inhibitor DX-9065a in this assay.  相似文献   

14.
Based on our previous results on the potent antagonist effect of 1H,3H-pyrido[2,1-f]purine-2,4-diones at the human A(3) adenosine receptor, new series of this family of compounds have been synthesized and evaluated in radioligand binding studies against the human A(1), A(2A), A(2B), and A(3) receptors. A remarkable improvement in potency, and most noticeable, in selectivity has been achieved, as exemplified by the 3-cyclopropylmethyl-8-methoxy-1-(4-methylbenzyl)-1H,3H-pyrido[2,1-f]purine-2,4-dione (10) that combines a very high affinity at hA(3) (K(i)=2.24 nM), with lack of affinity for the A(1), A(2A), and A(2B) receptors. On the basis of the published hA(3) receptor model (PDB 1OEA), molecular modeling studies, including molecular dynamics (MD) simulations, have been performed to depict the binding mode of the 1 H,3H-pyrido[2,1-f]purine-2,4-diones and to justify the selectivity against the other adenosine receptors. These studies have led to novel features of the cavity where our antagonists are bound so that the cavity is lined by the hydrogen-bonded Gln 167-Asn 250 pair and by the highly conserved Phe 168.  相似文献   

15.
Screening of the Sigma-Aldrich Library of Pharmacologically Active Compounds (LOPAC) against cultured Trypanosoma brucei, the causative agent of African sleeping sickness, resulted in the identification of a number of compounds with selective antiproliferative activity over mammalian cells. These included (+)-(1R,2R)-U50488, a weak opioid agonist with an EC(50) value of 59 nM as determined in our T. brucei in vitro assay reported previously. This paper describes the modification of key structural elements of U50488 to investigate structure-activity relationships (SAR) and to optimise the antiproliferative activity and pharmacokinetic properties of this compound.  相似文献   

16.
Several 3-heteroaryl analogs of the known dehydroquinase inhibitor (1R,4R,5R)-1,4,5-trihydroxy-2-cyclohexene-1-carboxylic acid (4) were synthesized and tested as inhibitors of Helicobacter pylori type II dehydroquinase, the third enzyme of the shikimic acid pathway. All of these compounds proved to be reversible competitive inhibitiors of this enzyme and proved to be, with the exception of nitrile 8 e, more potent than the parent inhibitor 4 (K(i)=370 microM). The 2-thienyl derivative 8 b was found to be the most potent inhibitor of the series and has a K(i) value of 540 nM, which is almost seven hundred times lower than that of the parent inhibitor. The 3-nitrothienyl derivative 8 d and 2-furanyl derivative 8 a also had a good affinity of 1 microM. The conformation of the potent competitive inhibitor 8 b, when bound in the active site of the H. pylori enzyme, was elucidated by 1D-selective inversion NOE, Saturation Transfer Difference (STD) and transferred NOESY NMR experiments. One of the conformations that exists in solution for the potent competitive inhibitor 2-thienyl derivative 8 b is selected when it is bound to the active site of the enzyme. In the bound conformation derivative 8 b has the sulfur atom of its thienyl group oriented towards the double bond of the cyclohexene moiety. The large STD effects observed for the aromatic protons of 8 b show that it is the thiophene side of the ligand that makes closest contact with enzyme protons. Docking studies using GOLD3.0.1 suggest that the conformation determined by NMR allows strong lipophilic interactions with the enzyme residues Pro9, Asn10, Ile11, Gly78 and Ala 79. Competitive STD experiments carried out with high-, medium- and low-affinity ligands 8 b, 5 d and 5 f show that they all bind in the same site of Helicobacter pylori dehydroquinase.  相似文献   

17.
A screen of a focused kinase inhibitor library against Trypanosoma brucei rhodesiense led to the identification of seven series, totaling 121 compounds, which showed >50 % inhibition at 5 μm . Screening of these hits in a T. b. brucei proliferation assay highlighted three compounds with a 1H‐imidazo[4,5‐b]pyrazin‐2(3H)‐one scaffold that showed sub‐micromolar activity and excellent selectivity against the MRC5 cell line. Subsequent rounds of optimisation led to the identification of compounds that exhibited good in vitro drug metabolism and pharmacokinetics (DMPK) properties, although in general this series suffered from poor solubility. A scaffold‐hopping exercise led to the identification of a 1H‐pyrazolo[3,4‐b]pyridine scaffold, which retained potency. A number of examples were assessed in a T. b. brucei growth assay, which could differentiate static and cidal action. Compounds from the 1H‐imidazo[4,5‐b]pyrazin‐2(3H)‐one series were found to be either static or growth‐slowing and not cidal. Compounds with the 1H‐pyrazolo[3,4‐b]pyridine scaffold were found to be cidal and showed an unusual biphasic nature in this assay, suggesting they act by at least two mechanisms.  相似文献   

18.
Isomeric nitrophenyl and heterocyclic analogues of the known inhibitor (1S,3R,4R)-1,3,4-trihydroxy-5-cyclohexene-1-carboxylic acid have been synthesized and tested as inhibitors of M. tuberculosis and S. coelicolor type II dehydroquinase, the third enzyme of the shikimic acid pathway. The target compounds were synthesized by a combination of Suzuki and Sonogashira cross-coupling and copper(I)-catalyzed 2,3-dipolar cycloaddition reactions from a common vinyl triflate intermediate. These studies showed that a para-nitrophenyl derivative is almost 20-fold more potent as a competitive inhibitor against the S. coelicolor enzyme than that of M. tuberculosis. The opposite results were obtained with the meta isomer. Five of the bicyclic analogues reported herein proved to be potent competitive inhibitors of S. coelicolor dehydroquinase, with inhibition constants in the low nanomolar range (4-30 nM). These derivatives are also competitive inhibitors of the M. tuberculosis enzyme, but with lower affinities. The most potent inhibitor against the S. coelicolor enzyme, a 6-benzothiophenyl derivative, has a K(i) value of 4 nM-over 2000-fold more potent than the best previously known inhibitor, (1R,4R,5R)-1,5-dihydroxy-4-(2-nitrophenyl)cyclohex-2-en-1-carboxylic acid (8 microM), making it the most potent known inhibitor against any dehydroquinase. The binding modes of the analogues in the active site of the S. coelicolor enzyme (GOLD 3.0.1), suggest a key pi-stacking interaction between the aromatic rings and Tyr 28, a residue that has been identified as essential for enzyme activity.  相似文献   

19.
The importance of American trypanosomiasis (Chagas' disease) in human pathology is widely known. The prognosis of this disease is poor and the choice of effective medicines limited, thus study of new drugs is absolutely necessary. In this work, the activities of three new pyrazolylnaphthoquinones, heterocyclic naphthoquinones bearing 3-aminopyrazole rings, were evaluated on Trypanosoma cruzi, the etiological agent of Chagas' disease. These activities were compared with those of three 5-aminoisoxazole analogues. In addition, since these compounds belong to a family of antiprotozoal and cytotoxic/antitumor agents, the activities of all six against Plasmodium falciparum, Trypanosoma brucei rhodesiense, and murine L-6 cells were also investigated. In the biological tests, five of the compounds showed significant in vitro trypanocidal activities against T. cruzi, with activities similar to that of benznidazole. Two of the 5-aminoisoxazole analogues also showed good activities, in one case highly selective, against the K1 and NF54 strains of P. falciparum (IC(50)<0.12 microg mL(-1)). Three of the compounds were cytotoxic to murine L-6 cells (IC(50)=0.21-0.50 microg mL(-1)). The results suggested that the three pyrazolylnaphthoquinones and one of the 5-aminoisoxazole analogues could be starting points for lead optimization programs against T. cruzi and P. falciparum, respectively.  相似文献   

20.
A series of amidopropenyl hydroxamic acid derivatives were prepared as novel inhibitors of human histone deacetylases (HDACs). Several compounds showed potency at <100 nM in the HDAC inhibition assays, sub‐micromolar IC50 values in tests against three tumor cell lines, and remarkable stability in human and mouse microsomes was observed. Three representative compounds were selected for further characterization and submitted to a selectivity profile against a series of class I and class II HDACs as well as to preliminary in vivo pharmacokinetic (PK) experiments. Despite their high microsomal stability, the compounds showed medium‐to‐high clearance rates in in vivo PK studies as well as in rat and human hepatocytes, indicating that a major metabolic pathway is catalyzed by non‐microsomal enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号