首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This letter reports the effect of CNT doping levels on the pore structure of carbon nanotube (CNT)/silica xerogel composites, which would greatly influence the composite's physical behaviors and their applications in the field of optics. The composites were prepared by sol-gel technique and carried out pore structure analysis. The results show that there are mainly two grades of pores, centering at 8 and 15 nm respectively, that existed in the structure. The relative ratio of the two-grade pores, also BET surface area and pore volume of the composites, change with the different CNT doping levels. The reason may be that the addition of CNTs can act as inhomogeneous crystalline sources, seduce the silica xerogel network to grow around them and therefore change the gel formation process of silica granules.  相似文献   

2.
In this paper, we describe a single-wall carbon nanotube (SWNT) based biological sensor for the detection of biomolecules like Streptavidin and IgG. SWNTs have been employed for two types of sensing mechanisms. First, the changes in the electrical conductance of the carbon nanotube (CNT) matrix on noncovalent binding of the biomolecules to the side walls of the CNT and, second, quantification of mass uptake of the matrix on biomolecule incubation are presented. Both sensing mechanisms exhibited consistent and highly sensitive responses. Biomolecular immobilization on the CNT surface was monitored by atomic force microscopy.  相似文献   

3.
We report an experimental study of carbon nanotube (CNT) growth via catalytic pyrolysis of acetylene. Surface free energy is shown to play a key role in determining the catalytic activity of the liquid droplet on the CNT tip and to be responsible for the constant nanotube diameter. A vapor-liquid-nanotube model is proposed for CNT growth.  相似文献   

4.
The pre-treatment (catalyst reduction with H2) time effect on the carbon nanotube (CNT) growth is reported. The total CNT height, the initial growth rate, the diameter, the number of walls, and the alignment in the CNT forests change with the catalyst reduction time. Densely packed, vertically super-aligned, double-walled CNT (DWCNT) forests with 9 mm height were synthesized in 10 hrs. We find that the density and the size of catalysts plays an important role in the alignment of the DWCNT forests, which is evidenced by atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy.  相似文献   

5.
Chen IC  Chen LH  Orme CA  Jin S 《Nano letters》2007,7(10):3035-3040
Direct growth of a sharp carbon nanotube (CNT) probe on a very thin and highly flexible cantilever by plasma-enhanced chemical vapor deposition (PECVD) is desirable for atomic force microscopy (AFM) of nanoscale features on soft or fragile materials. Plasma-induced surface stresses in such fabrication processes, however, tend to cause serious bending of these cantilevers, which makes the CNT probe unsuitable for AFM measurements. Here, we report a new tunable CNT growth technique that controls cantilever bending during deposition, thereby enabling the creation of either flat or deliberately curved AFM cantilevers containing a CNT probe. By introducing hydrogen gas to the (acetylene + ammonia) feed gas during CNT growth and adjusting the ammonia to hydrogen flow ratio, the cantilever surface stress can be altered from compressive to tensile stress, and in doing so controlling the degree of cantilever bending. The CNT probes grown under these conditions have high aspect ratios and are robust. Contact-mode imaging has been demonstrated using these probe tips. Such CNT probes can be useful for bio-imaging involving DNA and other delicate biological features in a liquid environment.  相似文献   

6.
Functionally graded carbon nanotube (CNT)‐reinforced aluminum (Al) matrix composites have been successfully fabricated by a powder metallurgy route. The gradient layers containing different amounts of CNT additions showed different microstructures and hardness. Each layer demonstrated good adhesion, with no serious pores or microcracks. We controlled the characteristics of the bulk composite by the efficient design of each CNT gradient layer. The functionally graded material concept offers a feasible approach to fabricating Al‐CNT nanocomposites.  相似文献   

7.
This article reports on experiments for measuring pulling forces and displacements of a carbon nanotube (CNT) grafted on carbon fibers (CFs) and modeling for predicting the pulling force–displacement curves. In the experiments, the pulling force and displacement for different grafting configurations are measured. In the present analytical model, a power function relationship between a curvature radius and critical failure angle of the CNT was firstly established on the basis of the experimental data, and then the critical failure angle, maximum pulling forces and displacements were determined by using a free length, initial grafting length, initial grafting angle, the Hamaker constant and friction coefficient between the CNT and CF. By using the present model, pulling mechanical behaviors of CNTs with different grafting configurations are investigated and verified with results obtained from images taken in the experiment.  相似文献   

8.
We present a technique to increase carbon nanotube (CNT) density beyond the as-grown CNT density. We perform multiple transfers, whereby we transfer CNTs from several growth wafers onto the same target surface, thereby linearly increasing CNT density on the target substrate. This process, called transfer of nanotubes through multiple sacrificial layers, is highly scalable, and we demonstrate linear CNT density scaling up to 5 transfers. We also demonstrate that this linear CNT density increase results in an ideal linear increase in drain-source currents of carbon nanotube field effect transistors (CNFETs). Experimental results demonstrate that CNT density can be improved from 2 to 8 CNTs/μm, accompanied by an increase in drain-source CNFET current from 4.3 to 17.4 μA/μm.  相似文献   

9.
Millimeter‐long conducting fibers can be fabricated from carbon nanomaterials via a simple method involving the release of a prestrained protein layer. This study shows how a self‐rolling process initiated by polymerization of a micropatterned layer of fibronectin (FN) results in the production of carbon nanomaterial‐based microtubular fibers. The process begins with deposition of carbon nanotube (CNT) or graphene oxide (GO) particles on the FN layer. Before polymerization, particles are discrete and nonconducting, but after polymerization the carbon materials become entangled to form an interconnected conducting network clad by FN. Selective removal of FN using high‐temperature combustion yields freestanding CNT or reduced GO microtubular fibers. The properties of these fibers are characterized using atomic force microscopy and Raman spectroscopy. The data suggest that this method may provide a ready route to rapid design and fabrication of aligned biohybrid nanomaterials potentially useful for future electronic applications.  相似文献   

10.
Experimental demonstration of wafer-scale growth of well-aligned, dense, single-walled carbon nanotubes on 4" ST-cut quartz wafers is presented. We developed a new carbon nanotube (CNT) wafer-scale growth process. This process allows quartz wafers to be heated to the CNT growth temperature of 865degC through the alpha-beta phase transformation temperature of quartz (573degC) without wafer fracture. We also demonstrate wafer-scale CNT transfer to transfer these aligned CNTs from quartz wafers to silicon wafers. The CNT transfer process preserves CNT density and alignment. Carbon nanotube FETs fabricated using these transferred CNTs exhibit high yield. Wafer-scale growth and wafer-scale transfer of aligned CNTs enable carbon nanotube very large-scale integration circuits and their large-scale integration with silicon CMOS.  相似文献   

11.
We demonstrate a one-step approach for selecting the number of walls formed during carbon nanotube (CNT) growth by catalytic decomposition of CH(4) over Fe-Mo/MgO catalysts. Scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), thermal gravimetric analysis (TGA) and Raman spectroscopy analyses indicate that high purity single-walled, double-walled and triple-walled carbon nanotubes can be synthesized by tuning the Fe:Mo atomic ratio of catalysts. The results reveal that the concentration of Mo in the catalyst plays an important role in the size of catalyst particles and in the deposition rate of carbon atoms during CNT growth. Thus, the wall numbers of CNTs can be controlled precisely.  相似文献   

12.
13.
The goal of this work is to study the effect of high magnetic pulses on electrical property of carbon nanotube–polypyrrole (CNT–PPy) composites with different CNT concentrations. CNT–PPy composites are produced in fractions of 1, 5 and 9 wt%. During the polymerization process, the CNTs are homogeneously dispersed throughout the polymer matrix in an ultrasonic bath. Nanocomposite rods are prepared. After exposure to 30 magnetic pulses, the resistivity of the rods is measured. The surface conductivity of thin tablets of composites is studied by 4-probe technique. The magnitude of the pulsed magnetic field is 10 Tesla with time duration of 1.5 ms. The results show that after applying 30 magnetic pulses, the electrical resistivity of the composites decreases depending on the concentration of CNTs in the composites. The orientation of CNTs is probed by atomic force microscopy (AFM) technique. AFM images approved alignment of CNT–polymer fibres in the magnetic field. We found that the enhancement in the electrical properties of CNT–PPy composites is due to rearrangement and alignment of CNTs in a high magnetic field. The stability of nano-composites is studied by Fourier transform infrared spectroscopy.  相似文献   

14.
The resolution of scanning surface potential microscopy (SSPM) is mainly limited by non-local electrostatic interactions due to the finite probe size. Here we present high resolution surface potential imaging with ultrasharp and high aspect ratio carbon nanotube (CNT) atomic force microscopy (AFM) probes fabricated via dielectrophoresis. Enhancement of surface potential contrast by several factors is reported for integrated circuit structures and purple membrane fragments for these CNT AFM probes as compared to conventional probes. In particular, ultrahigh lateral resolution (~2?nm) surface potential images of self-assembled bacteriorhodopsin proteins are reported at ambient conditions, with the implication of label-free protein detection by SSPM techniques.  相似文献   

15.
We report enhanced thermal and mechanical properties of carbon nanotube (CNT) composites achieved through the use of functionalized CNTs-reactive polymer linkages and three-roll milling. CNTs were functionalized with carboxyl groups and dispersed in a polymer containing an epoxide group resulting in a chemical reaction. To maximize CNT dispersion for practical usage, entangled CNTs are separated and then evenly dispersed within the polymer matrix using three horizontally positioned rotating rolls that apply a strong shear force to the composite. Consequently, accompanying with thermal stability, elastic modulus and storage modulus of such functionalized CNT/polymer composites were increased by 100% and 500% that of the untreated epoxy polymer.  相似文献   

16.
This paper describes a class of three component hybrid nanowires templated by DNA directed self-assembly. Through the modification of carbon nanotube (CNT) termini with synthetic DNA oligonucleotides, gold nanoparticles are delivered, via DNA hybridization, to CNT tips that then serve as growth sites for zinc oxide (ZnO) nanowires. The structures we have generated using DNA templating represent an advance toward building higher order sequenced one dimensional nanostructures with rational control.  相似文献   

17.
The tip of an atomic force microscope is used to create carbon nanotube junctions by changing the position and shape of individual single‐walled carbon nanotubes on a SiO2 surface. With this manipulation technique, we are able to bend, buckle, cross (see Figure), and break nanotubes, and to unravel a nanotube “crop circle” into a single tube. Tapping‐mode atomic force microscopy measurements of the height of a carbon nanotube on the surface always yield values smaller than the nanotube diameter. Variation of the scan parameters shows that this is due to a tapping deformation by the tip. The tapping deformation of manipulated nanotube crossings and buckles is discussed as well.  相似文献   

18.
We report the results of our first-principles study based on density functional theory on the interaction of the nucleic acid base molecules adenine (A), cytosine (C), guanine (G), thymine (T), and uracil (U), with a single-walled carbon nanotube (CNT). Specifically, the focus is on the physisorption of base molecules on the outer wall of a (5, 0) metallic CNT possessing one of the smallest diameters possible. Compared to the case for CNTs with large diameters, the physisorption energy is found to be reduced in the high-curvature case. The base molecules exhibit significantly different interaction strengths and the calculated binding energies follow the hierarchy G>A>T>C>U, which appears to be independent of the tube curvature. The stabilizing factor in the interaction between the base molecule and CNT is dominated by the molecular polarizability that allows a weakly attractive dispersion force to be induced between them. The present study provides an improved understanding of the role of the base sequence in deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) in their interactions with carbon nanotubes of varying diameters.  相似文献   

19.
Alternating layer, carbon nanotubes-nanocrystal composite films, comprising multi-walled carbon nanotubes (MWCNTs) and iron oxide (Fe(3)O(4)) nanocrystals, have been fabricated via electrophoretic deposition (EPD) on stainless steel and gold substrates. Low field-high current and high field-low current EPD schemes were integrated to produce the composite films. The low field-high current EPD approach produced porous mats from an aqueous suspension of the MWCNTs, while the high field-low current EPD approach produced tightly packed nanocrystal films from a dispersion of the nanocrystals in hexane. Large electric fields applied during the nanocrystal EPD and strong van der Waals interactions among the nanocrystals facilitated the formation of tightly packed nanocrystal films atop the MWCNT mats to create CNT mat-nanocrystal film composites. The surface coverage and homogeneity of the nanocrystal films improved with repeated deposition of the nanocrystals on the same mat. The assembly of nanotube mats on top of the CNT mat-nanocrystal film composite confirmed the feasibility of multilayered CNT mat-nanocrystal film heterostructures suitable for a range of devices. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques were employed to characterize the surface coverage, homogeneity, and topology of these composite films.  相似文献   

20.
We report a size-exclusion chromatography (SEC) process to purify DNA-wrapped carbon nanotubes (DNA-CNT) and to sort them into fractions of uniform length. A type of silica-based column resin was identified that shows minimum adsorption of DNA-CNT. Three such columns in series with pore sizes of 2000, 1000, and 300 A were found to separate DNA-CNT into fractions of very narrow length distribution, as measured directly by atomic force microscopy. The average length decreases monotonically from > 500 nm in the early fractions to < 100 nm in the late fractions, with length variation < or = 10% in each of the measured fractions. Using UV-vis-NIR spectroscopy, we showed that SEC is very effective in removing graphitic impurities that contribute to the spectral baseline and a broad absorption peak at approximately 270 nm. This result highlights the importance of CNT purification in the study of optical properties of CNT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号