首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, mechanical properties of adhesively bonded single-lap joint (SLJ) geometry with different configurations of lower and upper adherends under tensile loading were investigated experimentally and numerically. The adherends were AA2024-T3 aluminum and carbon/epoxy composite with 16 laminates while, the adhesive was a two-part liquid, structural adhesive DP 460. In experimental studies, four different types of single-lap joints were produced and used namely; composite–composite (Type-I) with lower and upper adherends of the same thicknesses and four different stacking sequences, composite–aluminum (Type-II) with lower and upper adherends of the same thicknesses and four different stacking sequences, composite–aluminum (Type-III) with lower adherend (composite) of the same thickness but upper adherend of three different thicknesses, aluminum–aluminum (Type-IV) with lower adherend of the same thickness but upper adherend of three different thicknesses, composite–composite (Type-V) with [0]16 stacking sequences and three different overlap length, aluminum–aluminum (Type-VI) with three different overlap length. In the numerical analysis, the composite adherends were assumed to behave as linearly elastic materials while the adhesive layer and aluminum adherend were assumed to be nonlinear. The results obtained from experimental and numerical analyses showed that composite adherends with different fiber orientation sequence, different adherend thicknesses and overlap length affected the failure load of the joint and stress distributions in the SLJ.  相似文献   

2.
The strength of cylindrical butt joints, fabricated by bonding either aluminum or steel adherends together with an epoxy adhesive, has been determined for a wide range of bond thicknesses. Joint strength varied significantly with bond thickness. The measured strength of joints with steel adherends varied as the inverse cube root of bond thickness, while the strength of joints with aluminum adherends varied as the inverse fourth root of bond thickness. This bond thickness dependence is accurately predicted by an analysis that assumes failure occurs at a critical value of the interface corner stress intensity factor. The difference in the measured joint strength-bond thickness relation for joints with aluminum and steel adherends is a consequence of the difference in the order of the interface corner stress singularity.  相似文献   

3.
针对碳纤维增强树脂(CFRP)复合材料板-钢搭接接头连接的糊状胶黏剂粘层厚一致性控制较难、铅垂向成形可能不易等问题,将糊状胶黏剂换成胶膜,制作了胶膜连接的五种粘结长度共15个CFRP板-钢双搭接接头试件,并对该胶膜连接的CFRP板-钢搭接接头进行了室温条件下的破环模式、有效粘结长度、传力规律、粘结-滑移本构、承载力等的试验研究。结果表明:所用胶膜的连接强度略高于CFRP板层间强度(即碳纤维与树脂基体的黏聚强度);室温下,所用胶膜连接的CFRP板-钢搭接接头有效粘结长度约为80 mm;加载初期,剪应力最大值位于接头钢板端;继续加载,其位置向接头CFRP板端移动;加载末期,其位置位于距接头钢板端20 mm (粘结长度不超过80 mm时)或者50 mm (粘结长度不小于120 mm时)处;胶膜连接的CFRP板-钢搭接接头界面粘结-滑移模型为近似梯形,不同于胶黏剂连接的CFRP板-钢搭接接头的近似三角形,胶膜连接接头的延性大为提升;所用胶膜连接接头界面峰值剪应力、断裂能、界面刚度等代表值(可视为准平均值)分别为四种典型商品胶黏剂连接接头的1.2~3.0倍、1.6~5.7倍和5.4~7.5倍;在粘结长度不小于有效粘结长度条件下,所用胶膜连接接头的抗拉承载力代表值为四种典型商品胶黏剂连接接头的1.25~2.39倍;胶膜连接接头的抗拉承载力、最大位移的变异系数与糊状胶黏剂连接接头相差不大。   相似文献   

4.
This paper presents observations regarding the cracking behavior of tensile-loaded structural adhesive joints. Experiments showed that fracture occurred by the development and propagation of a damage zone, rather than a single, sharp crack, and that the presence of the adhesive spew fillet did not affect the fracture load of the adhesive joints studied. For joints bonded with the mineral-filled epoxy Cybond 4523GB (American Cyanamid), there was approximately 5 mm of subcritical crack propagation prior to final fracture. Fracture-load predictions based on the initial uncracked geometry made in previous papers were unaffected by this small change in geometry. For joints bonded with the rubber-toughened epoxy Permabond ESP 310, approximately 50 mm of subcritical crack propagation was observed. It was again found that predictions made in previous papers on the basis of the initial geometry gave a good estimate of the final fracture load even though this subcritical crack propagation significantly altered the geometry, and thus the applied energy release rates. The effect of shear deformations of the adherends was also investigated, and it was found that shear deformations could be neglected in engineering calculations for joints subject to remote tensile loading.  相似文献   

5.
The fatigue threshold and the cyclic crack growth of a highly-toughened epoxy adhesive were studied under mode I and several mixed-mode loading cases and compared with the quasi-static critical fracture energies. Four different adhesive systems were examined using steel and aluminum substrates having different surface roughness, and surface treatment. The effect of increasing the amount of mode II (increasing the phase angle) on the fatigue threshold strain energy release rate and the cyclic crack growth rate was found to be insignificant at low phase angles. However, a significant increase in the fatigue threshold and decrease in the cyclic crack growth rate was observed at higher phase angles. These trends were similar to that seen in adhesive joint fracture. Adherend surface roughness and surface preparation affected the fatigue behavior significantly, particularly at low crack speeds and high phase angles. The fatigue properties were essentially the same for both steel and aluminum adherends provided that the crack paths were cohesive. A general observation was that the fatigue crack path moved progressively closer to the more highly strained adherend under mixed-mode loading as the applied strain energy release rate and hence the crack speed, decreased. This caused mixed-mode cracks to be nearly interfacial in the threshold region.  相似文献   

6.
王玉奇  何晓聪  曾凯  邢保英 《材料导报》2016,30(24):82-87, 93
为研究循环载荷下单搭胶接接头的残余强度及失效机理,以5052铝合金单搭胶接接头为研究对象,先后对其进行静强度测试、疲劳强度测试和残余强度测试,引入威布尔分布对试验数据进行分析,检验其有效性,并采用超声扫描显微镜和扫描电子显微镜对失效胶层进行失效机理分析。结果表明,在疲劳循环载荷作用下,接头刚度基本稳定,而残余强度随着疲劳循环载荷周次的增加,呈现出先增大后减小的变化趋势;疲劳裂纹从接头搭接端部的界面端点处开始萌生,并快速向中间扩展,当疲劳循环达到一定次数时,胶层瞬间断裂,裂纹萌生阶段几乎占据了其全部疲劳寿命,失效后的胶层会出现"凹台"状微观结构。  相似文献   

7.
Scarf joints with small scarf angles are especially sensitive to stiffness mismatch between adherends and to adherend tip bluntness. Pre-assembly breakage of an adherend tip where it is only a few microns thick can cause significant reduction in joint strength. Mathematically, the reason for such sensitivity is that the solutions to the governing differential equation develop boundary layer character when the scarf angles are small. The boundary layers are regions with large adhesive stresses. Experimental strength data for laminated composite adherends agree with the results of this analysis.  相似文献   

8.
Fracture behaviour of adhesive joints under mixed mode loading is analysed by using the beam/adhesive-layer (b/a) model, in which, the adherends are beamlike and the adhesive is constrained to a thin flexible layer between the adherends. The adhesive layer deforms in peel (mode I), in shear (mode II) or in a combination of peel and shear (mixed mode). Macroscopically, the ends of the bonded part of the joints can be considered as crack tips. The energy release rate of a single-layer adhesive joint is then formulated as a function of the crack tip deformation and the mode-mixity is defined by the shear portion of the total energy release rate. The effects of transversal forces and the flexibility of the adhesive layer are included in the b/a-model, which can be applied to joints with short crack length as well as short bonding length. The commonly used end-loaded unsymmetric semi-infinite joints are examined and closed-form solutions are given. In comparison to the singular-field model in the context of linear elastic fracture mechanics, the b/a-model replaces the singularity at the crack tip with a stress concentration zone. It is shown that the b/a-model and the singular-field model yield fundamentally different mode-mixities for unsymmetric systems. The presented closed-form b/a-model solutions facilitates parametric studies of the influence of unbalance in loading, unsymmetry of the adherends, as well as the flexibility of the adhesive layer, on the mode mixity of an adhesive joint.  相似文献   

9.
A model for the amplitude and phase of ultrasonic tone-bursts incident on adherend–adhesive interfaces is developed for both reflected and transmitted waves. The model parameters include the interfacial stiffness constants, which characterize the elastic properties of idealized adherend–adhesive interfaces having a continuum of bonds. The ultrasonic continuum model is linked to the more realistic physico-chemical model of adhesive bonding via a scaling equation that establishes the relationship between the interfacial stiffness constants of the ultrasonic continuum model and the fraction of actual bonds in the physico-chemical model. The link to the physico-chemical model enables a quantitative assessment of the absolute bond strength. The ultrasonic continuum model and scaling equation are applied to the simulation assessment of the absolute bond strength of two aluminum alloy adherends joined by an epoxy adhesive. Model input is obtained from the calculated phase of tone-bursts reflected from the adherend–adhesive interfaces as a function of the interfacial stiffness constants. The simulation shows that the reflected phase is dominated by the first interface encountered by the incident tone-burst with little contribution from the second interface. The simulation also shows that the accuracy in assessing the adhesive bond strength depends on the sensitivity of the reflected phase to variations in the interfacial stiffness constants, reflecting the nonlinearities in both the phase-stiffness constant relationship and scaling equation.  相似文献   

10.
In this study, mechanical properties of double-strap joints with aluminum or composite patches of different orientation angles at their overlap area were investigated under tensile loading. For this purpose, AA2024-T3 aluminum was used as adherend, while patches were either AA2024-T3 aluminum or 16-ply laminate of carbon/epoxy composite with five different orientation angles ([0]16, [90]16, [0/90]8, [45/−45]8, [0/45/−45/90]4). A two-part paste adhesive (DP 460) was used to bond adherend and patches. Six different types of joint samples were subjected to tensile loading. The effect of patch material on failure load and stress distribution was examined experimentally and numerically. As a result, it was concluded that the data obtained from 3-D finite element analysis were coherent with experimental results and additional to that fiber orientation angles of the patches markedly affected the failure load of joints, failure mode and stress distributions appeared in adhesive and composite.  相似文献   

11.
Double cantilever beam (DCB) specimens of 2.5‐mm‐long SAC305 solder joints were prepared with thickness of copper adherends varying from 8 to 21 mm each. The specimens were tested under mode I loading conditions (ie, pure opening mode with no shear component of loading) with a strain rate of 0.03 second?1. The measured fracture load was used to calculate the critical strain energy release rate for crack initiation, Jci, in each case. Fracture behaviour showed a significant dependence on the adherend thickness; the Jci and plastic deformation of the solder at crack initiation decreased significantly with increase in adherend thickness. This behaviour was attributed to changes in stress distribution along the solder layer when the adherend thickness was varied. The capability of Jci as a property was then assessed to predict the fracture load of solder joints in specimens with different constraint levels caused by variations in adherend thicknesses. In light of the results obtained, a cohesive zone model (CZM) was developed to predict the fracture load of solder joints as a function of adherend thickness. Finally, a CZM with a single set of parameters was established to predict the fracture loads for all the cases. It was concluded that CZM was a better methodology to account for changes in degree of joint constraint imposed by bonding adherends.  相似文献   

12.
13.
刘志明  许昶 《复合材料学报》2020,37(11):2825-2832
以碳纤维/双马来酰亚胺(BMI)树脂复合材料平-折-平(FJF)连接接头为对象,通过试验对比分析了特定胶层厚度下碳纤维/BMI树脂复合材料FJF连接接头的静强度和疲劳性能,并探究了胶层厚度对碳纤维/BMI树脂复合材料FJF混合接头力学性能的影响。利用背面应变技术对碳纤维/BMI树脂复合材料FJF混合接头搭接区端部胶层开裂进行监测。利用有限元软件ABAQUS对不同胶层厚度下碳纤维/BMI树脂复合材料FJF混合接头搭接区胶层应力分布进行了分析。结果表明,碳纤维/BMI树脂复合材料FJF混合接头的平均拉伸极限载荷、搭接区端部胶层开裂平均循环次数和平均疲劳寿命均随着胶层厚度在0.1~0.3 mm范围内增加而增大。不同胶层厚度的碳纤维/BMI树脂复合材料FJF混合接头均经历相同的失效阶段,即搭接区胶层端部开裂,胶层沿搭接区断裂扩展,最终靠近加载端孔边拉伸断裂,呈±45°断口。随着胶层厚度在0.1~0.3 mm范围的增加,搭接区端部胶层剥离应力、剪切应力及孔边胶层压缩应力均减小。在胶层厚度为0.1~0.3 mm范围内,剪应力是胶层破坏的控制因素。   相似文献   

14.
This paper presents experimental and numerical investigations of the fatigue crack initiation and growth mechanism in metal-to-composite bonded double-lap joints. Fatigue tests were conducted under tension dominated loading, with crack lengths being measured optically. Examination of the fracture surface using scanning electron microscope revealed that fatigue cracks were near the interface between the co-cured adhesive and the first ply of the composite adherend. The finite element method has been used to determine the strain-energy release rate of a fatigue crack growing along the first ply of the composite. The effects of spew fillet size and crack initiation modes have also been studied by the finite element method. Comparison of the present experimental crack growth results with those measured using double-overlap joints, where the fatigue cracks were driven by pure mode II loading, indicate that the tensile mode loading has a overwhelming effect on the fatigue crack growth rates. The present results suggest that fatigue failure of metal-composite double-lap joints is mainly driven by tensile mode loading due to the peel stress.  相似文献   

15.
Fatigue tests and analytical investigation of adhesive bonded shaft joints were conducted to propose the estimation method of fatigue strength. Two kinds of adhesive bonded joints were studied: one, shaft joints connected with adhesive coupling, the other, adhesive joints of thin wall tubes to obtain standard fatigue strength. Both pulsating tensile and torsional fatigue tests were conducted with each adhesive joint. Furthermore, the stress distributions under tensile and torsional load conditions were analyzed by finite element method. Based on the analytically computed maximum normal shear stress in the adhesive layer, fatigue strength of the shaft joints was tandardized and compared with that of adhesive joints of thin wall tubes. As a result, it is confirmed that the maximum normal and shear stresses are key parameters for estimating fatigue strength under pulsating tensile and forsional load conditions, respectively. Furthermore, this study indicates an improved method of estimating fatigue strength by using tapered coupling order to reduce the stress concentration at the end of the adhesive layer.  相似文献   

16.
In the present paper, the following topics are reviewed in detail: (a) the available adhesives, as well as their recent advances, (b) thermodynamic factors affecting the surface pretreatments including adhesion theories, wettability, surface energy, (c) bonding mechanisms in the adhesive joints, (d) surface pretreatment methods for the adhesively bonded joints, and as well as their recent advances, and (e) combined effects of surface pretreatments and environmental conditions on the joint durability and performance. Surface pretreatment is, perhaps, the most important process step governing the quality of an adhesively bonded joint. An adhesive is defined as a polymeric substance with viscoelastic behavior, capable of holding adherends together by surface attachment to produce a joint with a high shear strength. Adhesive bonding is the most suitable method of joining both for metallic and non-metallic structures where strength, stiffness and fatigue life must be maximized at a minimum weight. Polymeric adhesives may be used to join a large variety of materials combinations including metal-metal, metal-plastic, metal-composite, composite-composite, plastic-plastic, metal-ceramic systems. Wetting and adhesion are also studied in some detail in the present paper since the successful surface pretreatments of the adherends for the short- and long-term durability and performance of the adhesive joints mostly depend on these factors. Wetting of the adherends by the adhesive is critical to the formation of secondary bonds in the adsorption theory. It has been theoretically verified that for complete wetting (i.e., for a contact angle equal to zero), the surface energy of the adhesive must be lower than the surface energy of the adherend. Therefore, the primary objective of a surface pretreatment is to increase the surface energy of the adherend as much as possible. The influence of surface pretreatment and aging conditions on the short- and long-term strength of adhesive bonds should be taken into account for durability design. Some form of substrate pretreatment is always necessary to achieve a satisfactory level of long-term bond strength. In order to improve the performance of adhesive bonds, the adherends surfaces (i.e., metallic or non-metallic) are generally pretretead using the (a) physical, (b) mechanical, (c) chemical, (d) photochemical, (e) thermal, or (e) plasma method. Almost all pretreatment methods do bring some degree of change in surface roughness but mechanical surface pretreatment such as grit-blasting is usually considered as one of the most effective methods to control the desired level of surface roughness and joint strength. Moreover, the overall effect of mechanical surface treatment is not limited to the removal of contamination or to an increase in surface area. This also relates to changes in the surface chemistry of adherends and to inherent drawbacks of surface roughness, such as void formations and reduced wetting. Suitable surface pretreatment increases the bond strength by altering the substrate surface in a number of ways including (a) increasing surface tension by producing a surface free from contaminants (i.e., surface contamination may cause insufficient wetting by the adhesive in the liquid state for the creating of a durable bond) or removal of the weak cohesion layer or of the pollution present at the surface, (b) increasing surface roughness on changing surface chemistry and producing of a macro/microscopically rough surface, (c) production of a fresh stable oxide layer, and (d) introducing suitable chemical composition of the oxide, and (e) introduction of new or an increased number of chemical functions. All these parameters can contribute to an improvement of the wettability and/or of the adhesive properties of the surface.  相似文献   

17.
目的 研究AA5052铝合金薄板在高速冲击载荷下的磁脉冲胶焊复合接头的动态力学性能,探究不同载荷速率对该胶焊复合接头力学和失效行为的影响规律.方法 利用磁脉冲焊接系统成功制备了胶焊复合连接试件.采用万能拉伸试验机、高速拉伸试验系统,结合全场应变测量系统,获得胶焊复合接头的力学性能规律,以及渐进失效过程和搭接区应变变化....  相似文献   

18.
Feasibility studies in using adhesive bonding to replace conventional fastening methods have been proved successful. At this stage it is essential to furnish the designer with the data required for such type of fabrication. One of the main factors affecting the bonded joint strength is the loading rate. Therefore, the objective of this study is to investigate the role of loading rate on fracture toughness of bonded joints. Cleavage strength tests were carried out at different loading rates using epoxy resin as an adhesive material and two adherend materials, namely aluminium and brass. Tests were carried out to cover seven different loading rates. The results indicate a significant role of the strain rate on the fracture strength.  相似文献   

19.
In this paper, the effect of silica nanoparticles (nano-silica) on the bonding strength of reinforced adhesive joints was experimentally studied in five concentrations. A two-part epoxy-based adhesive (Araldite 2015) was used to bond the adherends as well as silica nanoparticles for strengthening purposes. Nano-silica was added into the adhesive by 1, 1.5, 2, 2.5 and 3 wt.%. Some adhesive joints with and without nanoparticles were tested under uniaxial loading to obtain their bonding strength. The results showed that the change in the bonding strength is a function of nanoparticles concentration. Furthermore, it was concluded that the addition of silica nanoparticles has a suitable effect on the joint strength at an optimum point, in which the joint strength takes its maximum value, and a further increase in the nanoparticles weight fraction causes the joint strength to decrease.  相似文献   

20.
This paper addresses prediction of the strength of tubular adhesive joints with composite adherends by combining thermal and mechanical analyses. A finite element analysis was used to calculate the residual thermal stresses generated by cooling down from the adhesive cure temperature, and a nonlinear analysis incorporating the nonlinear adhesive behavior was performed to accurately estimate the mechanical stresses in the adhesive. Joint failure was estimated by three failure criteria: interfacial failure, adhesive bulk failure, and adherend failure. The distributions of residual thermal stresses were investigated for various stacking angles. The effect of residual thermal stresses on joint strength was also taken into consideration. The results indicate that the residual thermal stresses, depending on the stacking angle, have a significant influence on the failure mode and strength of adhesive joints when a subsequent mechanical load is applied. Good agreement is also obtained between the predicted joint strength and the available experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号