共查询到20条相似文献,搜索用时 78 毫秒
1.
聚合物原位复合纳米碳酸钙增韧PP研究 总被引:6,自引:0,他引:6
通过有机单体原位聚合包覆的CaCO3与PP熔融混合制备了PP/CaCO3纳米复合材料,经过正交实验研究了填料饱覆聚合物比、接枝聚丙烯以及复合填料含量对PP缺口冲击强度的影响,结果表明:复合纳米CaCO3只需填加5%就可以将缺口冲击强度提高为原树脂的2倍左右。 相似文献
2.
合成的异氰酸酯偶联剂,对超细碳酸钙(CaCO3)进行了表面处理,考察了处理后CaCO3对高密度聚乙烯(HDPE)的增韧效果。FTIR,SEM及力学性能测试等结果表明,异氰酸酯偶联剂在CaCO3表面产生了化学偶联作用,并且异氰酸酯偶联剂与钛酸酯偶联剂共用时有协同作用。在CaCO3临界质量分数为40%时,材料的冲击强度达到最大值43.2kJ/m^2,同时材料的刚性能够基本保持。随着CaCO3含量的变化,材料的熔体流动速率与冲击强度有着相似的变化规律,认为CaCO3粒子周围存在的塑性界面过渡区,是导致材料的熔体流动速率和冲击强度提高的原因。 相似文献
3.
4.
5.
研究纳米CaCO3不同含量共混对PVC的增韧增强改性影响,结果表明纳米CaCO3用量为10%时PVC样品冲击强度和拉伸强度达到最大值,同时随着纳米CaCO3加入量的增加,断裂伸长率一直呈下降趋势。综合实验数据,加工性能良好的PVC中纳米CaCO3的加入量控制在5%~10%较为适宜。 相似文献
6.
7.
我国刚性粒子增韧HDPE的研究进展 总被引:6,自引:0,他引:6
详细论述了近年来国内无机和有机刚性粒子增韧HDPE的研究发展状况,包括增韧的材料体系、不同刚性粒子增韧实例和刚性粒子在基体中的分散与形态,并探讨了刚性粒子的增韧机理。 相似文献
8.
偶联剂处理超细CaCO3增韧HDPE研究 总被引:3,自引:0,他引:3
用合成的异氰酸酯偶联剂,对超细碳酸钙(CaCO3)进行了表面处理,考察了处理后CaCO3对高密度聚乙烯(HDPE)的增韧效果。FTIR,SEM及力学性能测试等结果表明,异氰酸酯偶联剂在CaCO3表面产生了化学偶联作用,并且异氰酸酯偶联剂与钛酸酯偶联剂共用时有协同作用。在CaCO3临界质量分数为40%时,材料的冲击强度达到最大值43.2kJ/m^2,同时材料的刚性能够基本保持。随着CaCO3含量的变化,材料的熔体流动速率与冲击强度有着相似的变化规律,认为CaCO3粒子周围存在的塑性界面过渡区,是导致材料的熔体流动速率和冲击强度提高的原因。 相似文献
9.
10.
纳米碳酸钙增韧增强聚丙烯的研究 总被引:6,自引:0,他引:6
研究了聚丙烯/纳米碳酸钙复合材料的综合力学性能,用Ceast仪器化冲击试验机对复合材料冲击过程的力一时间、能量一时间关系曲线分析表明,冲击裂纹开裂应力和开裂能都远高于橡胶或弹性体增韧聚丙烯体系,证明该复合材料是一类“强而韧”的材料;用扫描电镜观察复合材料缺口冲击祥条断面发现,复合材料的断裂方式由耗能少的空洞化一银纹断裂方式逐步向耗能多的基体屈服方式转化,从而达到材料的增韧。 相似文献
11.
12.
采用熔融共混法制备了高密度聚乙烯(HDPE)/纳米碳酸钙(nano-CaCO3)复合材料,研究了nano-CaCO3表面改性前后对复合材料力学性能的影响,利用扫描电镜(SEM)分析了nano-CaCO3表面改性前后在HDPE基体中的分散性。结果表明:加入量较小时,nano-CaCO3表面改性与否对复合材料的力学性能及其在HDPE基体中的分散性基本没有影响;加入量较大时,表面改性nano-CaCO3使复合材料具有更好的力学性能,并且其在HDPE基体中的分散性也更好。 相似文献
13.
大分子偶联剂对HDPE/纳米CaCO3复合材料性能的影响 总被引:31,自引:4,他引:31
为进一步改善HDPE/纳米CaCO3体系的性能,采用一种大分子偶联剂(聚合物型分散剂)对纳米CaCO3进行表面处理,处理使填充体系有良好的综合性能,且断裂伸长率显著提高,加工性能也得到极大改善。 相似文献
14.
表面处理对HDPE/Nano—CaCO3复合材料性能的影响 总被引:30,自引:5,他引:30
本文主要研究了表面处理剂种类、用量对HDPE/Nano=CaCO3复合材料性能的影响。结果表明,由于钠米CaCO3粒子粒径的急剧减少和表面物理化学状况已发生较大变化,偶联剂用量的单分子层理论模型已不再适用于纳米粒子填料;处理剂种类对复合材料性能影响不大,但处理剂用量对复合材料的冲击性能,纳米粒子在基体中的分散却有明显影响。 相似文献
15.
16.
17.
18.
19.
采用熔融共混法制备了聚丙烯(PP)/纳米碳酸钙(nano-CaCO3)复合材料,研究了nano-CaCO3表面改性前后对复合材料力学性能的影响,利用扫描电镜(SEM)分析了nano-CaCO3表面改性前后在PP基体中的分散性。结果表明:加入量较小时,nano-CaCO3表面改性与否对复合材料的力学性能和在PP基体中的分散性基本没有影响;加入量较大时,表面改性nano-CaCO3使复合材料具有更好的力学性能,并且在PP基体中的分散性及其与PP基体间的界面黏结性也更好。 相似文献
20.
为了改善纳米碳酸钙在聚氯乙烯(PVC)基体中的分散性和相容性,分别采用十八胺、十二胺和辛胺与马来酸酐反应,制备出三种改性剂;然后分别用这三种改性剂对纳米碳酸钙进行湿法改性,制备了PVC/纳米碳酸钙复合材料,系统研究了改性纳米碳酸钙对PVC复合材料力学性能的影响。结果表明:三种改性剂均可以与纳米碳酸钙表面结合,阻止了纳米碳酸钙的团聚,改性后的粒子可以均匀地分散在PVC基体中;三种改性剂改性的纳米碳酸钙都可以显著提高PVC复合材料的缺口冲击强度,但其弯曲强度和拉伸强度变化不大。 相似文献