首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
以Bi(NO33·5H2O和Na2WO4·2H2O为前驱体,采用溶剂热法合成了Bi2WO6/Bi2O2CO3异质结,利用XRD、XPS、SEM、TEM、BET、FT-IR、UV-Vis、PL等对催化剂进行表征和分析。以环丙沙星和罗丹明B为目标污染物,在可见光下对污染物进行降解,并探究了材料的光催化活性。结果表明,Bi2WO6/Bi2O2CO3复合材料的光催化活性远高于纯Bi2WO6和纯Bi2O2CO3,原因是Bi2WO6和Bi2O2CO  相似文献   

2.
以B2O3为助催化剂,采用研磨混合法改性Na2CO3催化剂,在固定床反应器中催化甲醇脱氢制备无水甲醛,考察催化剂的组成和反应条件等对催化反应的影响,采用XRD、TG-DTG、N2吸附-脱附、SEM和CO2-TPD等对催化剂进行表征。结果表明,以B2O3为助催化剂采用机械研磨混合法改性的Na2CO3催化剂,增加了催化剂的比表面积,在(10~30) nm增加了大量的孔道,平均孔径达18.44 nm,比表面积为1.65 m2·g-1,且B2O3分布均匀,改性后的催化剂碱性降低,在催化甲醇脱氢制备无水甲醛的反应中,催化活性明显高于Na2CO3催化剂,表明B2O3改性Na2CO3催化剂能提高甲醇转化率和甲醛选择性。在B2O3/Na2CO3催化剂中B2O3质量分数为30%、甲醇进料质量分数为26%、反应温度为650 ℃和甲醇重时空速为2.94 h-1条件下,甲醇转化率达59.97%,甲醛选择性达83.28%。  相似文献   

3.
顾小移 《化学工程师》2024,(5):12-16+48
采用负载法成功制备了Bi12O17Cl2/TiO2异质结样品。通过XRD、XPS、SEM、BET、UV-Vis DRS、EIS和PL等技术对样品的结构及性质进行分析。研究结果表明,在光照条件下,Bi12O17Cl2/TiO2异质结样品能够提高光生载流子的分离效率,进而提高光催化产氢活性。其中Bi12O17Cl2负载量为6%的6%-Bi12O17Cl2/TiO2样品展现了最佳的光催化产氢活性,经5h光照后,其H2产量达到147.92μmol·g-1,平均H2产量为29.58μmol·(g·h)-1。稳定性实验表明,Bi12O17C  相似文献   

4.
采用溶胶-凝胶法制备TiO2-SiO2,用浸渍法将H2PW12O40负载在TiO2-SiO2上,制得H3PW12O40/TiO2-SiO2光催化剂。探究在模拟自然光条件下,光照时间、甲基红溶液初始浓度、催化剂用量和溶液pH对甲基红可见光催化降解的的影响。实验结果显示,在光照时间为15min.甲基红溶液初始浓度为15mg/L.催化剂用量为1.8g/L以及pH为2的优化条件下,甲基红的光降解率高达99.7%。光催化降解甲基红溶液为一级动力学反应。  相似文献   

5.
通过H2SO4改性制备了TiO2光催化剂,采用XRD和激光粒度仪进行表征,研究了H2SO4浸泡浓度、光照时间、pH和氧化剂H2O2用量对钻井废水进行光催化处理的影响。结果表明,H2SO4改性并未改变TiO2晶体结构,在钻井废水水样pH=6、H2SO4改性TiO2用量15 g·L-1、光照时间30 min和氧化剂H2O2用量1.0 mL条件下,钻井废水的COD值降为2 mg·L-1,符合国家污水排放标准。  相似文献   

6.
为阐明H2O2/Fe2(MoO4)3体系脱硝过程中H2O2吸附分解及NO氧化行为,基于DFT方法首次计算了H2O2和NO分子单独及二者同时在Fe2(MoO4)3表面的吸附构型,并通过考察吸附能、Mulliken电荷及氧化路径等特性揭示H2O2催化分解和NO氧化的微观机制。结果表明:H2O2在Fe2(MoO4)3表面易分解为活性自由基,而NO则以分子形式吸附;H2O2和NO共吸附时,H2O2优先吸附于催化剂表面并随后分解,NO则分别被H2O2分解产...  相似文献   

7.
柴达木盐湖中具有丰富的盐湖离子,对其中的一个四元体系水盐相图开展研究,采用等温溶解平衡法开展了298.15 K时四元体系NaCl+NaBO2+Na2CO3+H2O相平衡研究,测定了体系平衡液相组成及密度和折光率,绘制了四元体系NaCl+NaBO2+Na2CO3+H2O 298.15 K的相图及相应的物化性质图。研究发现NaCl+NaBO2+Na2CO3+H2O四元体系298.15 K 时包含2个共饱点(E1E2)、5条溶解度曲线(AE1BE1CE2DE2E1E2)、4个结晶区(NaCl、NaBO2·4H2O、Na2CO3·7H2O、NaCl·NaBO2·2H2O)。其中三元体系NaCl+NaBO2+H2O在298.15 K下产生了复盐NaCl·NaBO2·2H2O,通过研究发现该四元体系NaCl+NaBO2+Na2CO3+H2O在298.15 K下也具有NaCl·NaBO2·2H2O复盐区。  相似文献   

8.
目的:建立一种基于4-氯-1-萘酚(4-CN)沉淀反应的过氧化氢(H2O2)快速可视化检测方法。方法:在纸上负载修饰了辣根过氧化物酶(HRP)的石墨烯纳米材料,在HRP催化下,4-CN遇H2O2氧化生成紫色不溶物沉积。结果:在HRP催化作用下,随着H2O2浓度增加,颜色逐渐加深,色度分析结果与H2O2的浓度呈现良好的线性关系(R2>0.99),关系方程为y=122.8-0.84x,为可视化检测提供了依据。结论:本研究建立了一种H2O2可视化快速检测方法,具有操作简便、快速、试剂易得等优点,为监测食品中H2O2水平提供了一种技术手段。  相似文献   

9.
以亚甲基蓝(MB)作为目标污染物,实验研究了Fe2+/H2O2体系降解MB的活性物质,明确了主要反应条件对MB降解的影响特性。结果表明:HO2?没有直接降解MB的能力;Fe2+/H2O2体系对MB的降解能力主要来自于?OH;Fe2+/H2O2体系降解MB可分为快速反应阶段和匀速反应阶段。快速反应阶段的MB降解率随温度升高而下降。体系对MB降解能力随H2O2初始浓度增加呈现先升高后减弱的趋势,本实验条件下,最佳H2O2初始浓度为5 mmol·L-1。体系对MB降解能力随Fe2+初始浓度的增加而单调增加。MB降解速率随MB初始浓度的增加而增加,但MB降解率随其初始浓度呈现先增大后减小的趋势。保证?OH生成速率及其有效利用是提高体系氧化能力及H2O2利用率的关键。  相似文献   

10.
采用水热和沉淀两步合成法制备AgBr/Zn3(OH)2V2O7·2H2O催化剂,研究其在可见光下降解亚甲基蓝溶液的性能,并考察催化剂用量、亚甲基蓝溶液初始浓度、pH值以及盐浓度对光催化性能的影响,评价AgBr/Zn3(OH)2V2O7·2H2O催化剂的重复使用性能。结果表明,在前驱液pH为10、120 ℃水热10 h、Ag与Br物质的量比为0.20条件下制备的复合催化剂在可见光下反应120 min后,1.0 g·L-1的催化剂对10 mg·L-1的亚甲基蓝溶液脱色率达到85.2%。NaCl对亚甲基蓝的降解起抑制作用,Na2SO4对亚甲基蓝的降解起促进作用。催化剂重复使用4次后,光照120 min后的亚甲基蓝溶液脱色率可达66.4%。催化剂对不同初始浓度亚甲基蓝溶液的光催化降解符合一级动力学模型。  相似文献   

11.
A study is reported of the CO2 dissociation pressures for molten carbonates using an emf technique. In the gas concentration cell Au/O2(CO2)diss/CO32−/CO2, O2/Pt, the conditions are adjusted so that the CO2 in the Au compartment is due to the carbonate dissociation. It is shown that EoAu(CO2/O2) = EoPt(CO2/O2) and it follows that this technique may thus be used to monitor the CO2 dissociation pressures of the electrolyte in a continuous manner, with minimum disturbances. The method appears particularly suited for very low dissociation pressure measurements.  相似文献   

12.
Chao Lu  Jin-Ming Lin   《Catalysis Today》2004,90(3-4):343-materials
Peroxynitrous acid (ONOOH) was formed by the on-line rapid reaction of acidified hydrogen peroxide with nitrite in a simple flow system. A weak chemiluminescent (CL) signal was observed due to the production of singlet oxygen (1O2) when ONOOH reacted with NaOH, whereas the replacement of NaOH by Na2CO3 markedly enhanced the CL intensity. The predominant CL-enhanced pathway was achieved by the carbonate-catalyzed decomposition of peroxynitrite (ONOO). Carbonate species was regenerated in the process, that is, carbonate acts as a catalyst. Based on the studies of CL and fluorescence spectra, a possible CL mechanism from the reaction of carbonate with ONOOH was proposed. In brief, ONOOH was an unstable compound in acidic solution and could be quenched into ONOO in basic media. It was suggested that ONOO reaction with excess HCO3 proceeded via one-electron transfer to yield bicarbonate ion radicals (HCO3√). The recombination of HCO3√ may directly generate excited triplet dimers of two CO2 molecules [(CO2)2*]. With the decomposition of this unstable intermediate to CO2, the energy was released by CL emission. The addition of uranine into carbonate solution caused enhancement of the CL signal, which was due to a part of excited triplet dimers of two CO2 molecules energy to transfer to uranine, resulting in two CL peaks.  相似文献   

13.
Y. Hu  S. Naito  N. Kobayashi  M. Hasatani 《Fuel》2000,79(15):1925-1932
The emissions of CO2, NOx and SO2 from the combustion of a high-volatile coal with N2- and CO2-based, high O2 concentration (20, 50, 80, 100%) inlet gases were investigated in an electrically heated up-flow-tube furnace at elevated gas temperatures (1123–1573 K). The fuel equivalence ratio, φ, was varied in the range of 0.4–1.6. Results showed that CO2 concentrations in flue gas were higher than 95% for the processes with O2 and CO2-based inlet gases. NOx emissions increased with φ under fuel-lean conditions, then declined dramatically after φ=0.8, and the peak values increased from about 1000 ppm for the air combustion process and 500 ppm for the O2(20%)+CO2(80%) inlet gas process to about 4500 ppm for the oxygen combustion process. When φ>1.4 the emissions decreased to the same level for different O2 concentration inlet gas processes. On the other hand, NOx emission indexes decreased monotonically with φ under both fuel-lean and fuel-rich combustion. SO2 emissions increased with φ under fuel-lean conditions, then declined slightly after φ>1.2. Temperature has a large effect on the NOx emission. Peak values of the NOx emission increased by 50–70% for the N2-based inlet gas processes and by 30–50% for the CO2-based inlet gas process from 1123 to 1573 K. However, there was only a small effect of temperature on the SO2 emission.  相似文献   

14.
A series of novel dense mixed conducting ceramic membranes based on K2NiF4-type (La1–xCax)2 (Ni0.75Cu0.25)O4+δ was successfully prepared through a sol-gel route. Their chemical compatibility, oxygen permeability, CO and CO2 tolerance, and long-term CO2 resistance regarding phase composition and crystal structure at different atmospheres were studied. The results show that higher Ca contents in the material lead to the formation of CaCO3. A constant oxygen permeation flux of about 0.63 mL·min1·cm2 at 1173 K through a 0.65 mm thick membrane was measured for (La0.9Ca0.1)2 (Ni0.75Cu0.25)O4+δ, using either helium or pure CO2 as sweep gas. Steady oxygen fluxes with no sign of deterioration of this membrane were observed with increasing CO2 concentration. The membrane showed excellent chemical stability towards CO2 for more than 1360 h and phase stability in presence of CO for 4 h at high temperature. In addition, this membrane did not deteriorate in a high-energy CO2 plasma. The present work demonstrates that this (La0.9Ca0.1)2(Ni0.75Cu0.25)O4+δ membrane is a promising chemically robust candidate for oxygen separation applications.  相似文献   

15.
过碳酸钠是过氧化氢与碳酸钠的加成化合物,具有在存储、运输和使用过程中安全稳定的优点。本文采用共沉淀-高温煅烧法制备纳米片状Mn2O3@α-Fe3O4,活化过碳酸钠(SPC)产生自由基氧化降解偶氮染料活性黑5(RBK5)。采用透射电子显微镜(TEM)、X射线粉末衍射仪(XRD)、扫描电子显微镜(SEM)、傅里叶变换红外光谱仪(FTIR)、X射线光电子能谱(XPS)及比表面积测试(BET)表征制备的纳米片状Mn2O3@α-Fe3O4催化剂,分别探究催化剂投加量、过碳酸钠浓度、初始pH及RBK5溶液浓度对降解效率的影响。当催化剂投加量为0.3g/L、过碳酸钠浓度为1.0mmol/L、初始pH为3、反应时间为90min时,RBK5的降解效率达88%,反应过程符合拟一级动力学(R2>0.9)。Mn2O3@α-Fe3O4/过碳酸钠体系中起氧化降解作用的活性物种为·OH、CO3-·、O2-·和1O2,其中·OH占据主导地位,XPS反映了铁锰元素存在价态以及双金属间的协同作用,依据猝灭实验及XPS分析降解机理。  相似文献   

16.
In this contribution, a commercial spherical SiO2 was modified with different amounts of La2O3, and used as the support of Ni catalysts for autothermal reforming of methane in a fluidized-bed reactor. Nitrogen adsorption, XRD and H2-TPR analysis indicated that La2O3-modified SiO2 had higher surface area, strengthened interaction between Ni and support, and improved dispersion of Ni. CO2-TPD found that La2O3 increased the alkalescence of SiO2 and improved the activation of CO2. Coking reaction (via both temperature-programmed surface reaction of CH4 (CH4-TPSR) and pulse decomposition of CH4) disclosed that La2O3 reduced the dehydrogenation ability of Ni. CO2-TPO, O2-TPO (followed after CH4-TPSR) confirmed that only part amount of carbon species derived from methane decomposition could be removed by CO2, and O2 in feed played a crucial role for the gasification of the inactive surface carbons. Ni/xLa2O3-SiO2 (x = 10, 15, 30) possessed high activity and excellent stability for autothermal reforming of methane in a fluidized-bed reactor.  相似文献   

17.
The kinetics of CO and H2 oxidation over a CuO-CeO2 catalyst were simultaneously investigated under reaction conditions of preferential CO oxidation (PROX) in hydrogen-rich mixtures with CO2 and H2O. An integral packed-bed tubular reactor was used to produce kinetic data for power-law kinetics for both CO and H2 oxidations. The experimental results showed that the CO oxidation rate was essentially independent of H2 and O2 concentrations, while the H2 oxidation rate was practically independent of CO and O2 concentrations. In the CO oxidation, the reaction orders were 0.91, −0.37 and −0.62 with respect to the partial pressure of CO, CO2 and H2O, respectively. In the H2 oxidation, the orders were 1.0, −0.48 and −0.69 with respect to the partial pressure of H2, CO2 and H2O, respectively. The activation energies of the CO oxidation and the H2 oxidation were 94.4 and 142 kJ/mol, respectively. The rate expressions of both oxidations were able to predict the performance of the PROX reactor with accuracy. The independence between the CO and the H2 oxidation suggested different sites for CO and H2 adsorption on the CuO-CeO2 catalyst. Based on the results, we proposed a new reaction model for the preferential CO oxidation. The model assumes that CO adsorbs selectively on the Cu+ sites; H2 dissociates and adsorbs on the Cu0 sites; the adsorbed species migrates to the interface between the copper components and the ceria support, and reacts there with the oxygen supplied by the ceria support; and the oxygen deficiency on the support is replenished by the oxygen in the reaction mixture.  相似文献   

18.
The direct synthesis of hydrogen peroxide from H2 and O2 using a range of supported Au–Pd alloy catalysts is compared for different supports using conditions previously identified as being optimal for hydrogen peroxide synthesis, i.e. low temperature (2 °C) using a water–methanol solvent mixture and short reaction time. Five supports are compared and contrasted, namely Al2O3, -Fe2O3, TiO2, SiO2 and carbon. For all catalysts the addition of Pd to the Au only catalyst increases the rate of hydrogen peroxide synthesis as well as the concentration of hydrogen peroxide formed. Of the materials evaluated, the carbon-supported Au–Pd alloy catalysts give the highest reactivity. The results show that the support can have an important influence on the synthesis of hydrogen peroxide from the direct reaction. The effect of the methanol–water solvent is studied in detail for the 2.5 wt% Au–2.5 wt% Pd/TiO2 catalyst and the ratio of methanol to water is found to have a major effect on the rate of hydrogen peroxide synthesis. The optimum mixture for this solvent system is 80 vol.% methanol with 20 vol.% water. However, the use of water alone is still effective albeit at a decreased rate. The effect of catalyst mass was therefore also investigated for the water and water–methanol solvents and the observed effect on the hydrogen peroxide productivity using water as a solvent is not considered to be due to mass transfer limitations. These results are of importance with respect to the industrial application of these Au–Pd catalysts.  相似文献   

19.
The effect of carbon dioxide on the chemical stability of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ cathode in the real reaction environment at 450 °C was investigated by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), temperature programmed desorption (TPD), X-ray diffraction (XRD) and electrochemical impedance spectra (EIS) techniques. It was found that the presence even of very small quantities of CO2 seriously deteriorates the fuel cell performance at 450 °C. XPS, TPD and XRD results strongly evidenced the formation of carbonates involving strontium and possibly barium after the BSCF cathode was operated in 1% CO2/O2 gas mixture at 450 °C for 24 h. SEM-EDX analysis of the BSCF cathode surface, after treatment in CO2/O2 environment at 450 °C, showed small particles on the surface probably associated with a carbonate phase and a segregated phase of the perovskite. The corresponding EDX spectra confirmed the presence of a carbonate layer and also revealed the surface enrichment of strontium and barium elements. EIS results indicated that both ohmic and polarization resistances increased gradually with the introduction of carbon dioxide in the oxidant stream, which could be interpreted by the decreased oxygen reduction kinetics and the formation of carbonate insulating layer.  相似文献   

20.
The direct synthesis of hydrogen peroxide from H2 and O2 using zeolite-supported Au-Pd catalysts is described using two zeolites, ZSM-5 and zeolite Y, using an impregnation method of preparation. The addition of Pd to Au for these catalysts significantly enhances the productivity for hydrogen peroxide. The use of zeolites as a support for Au-Pd gives higher rates of hydrogen peroxide formation when compared with alumina-supported Au catalysts prepared using a similar method. The addition of metals other than Pd is also investigated, but generally Au-Pd catalysts give the highest activity for the synthesis of hydrogen peroxide. The addition of Ru and Rh have no significant effect, but the addition of Pt does enhance the activity for the selective formation of hydrogen peroxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号