共查询到19条相似文献,搜索用时 46 毫秒
1.
窄线宽光纤激光器在光纤传感、激光倍频、光谱测量等领域有广泛应用。简单介绍了窄线宽光纤激光器的研究进展.详细阐述了窄线宽光纤激光器的各种腔形结构及线宽压缩机制,并对各种方法作了简要的对比。 相似文献
2.
随着智能感知技术的快速发展,高功率、窄线宽的半导体激光光源成为研究热点。通过在边发射半导体激光器件表面引入高阶曲线光栅,设计了一种独特的非稳谐振腔结构,可实现高功率和窄线宽。采用紫外光刻和电感耦合等离子体(ICP)刻蚀技术,制备了周期为6.09μm、占空比为0.66、刻蚀深度为500 nm的曲线光栅。在室温条件下,测得腔长为2 mm的器件的阈值电流为220 mA,连续输出功率为1.48 W,斜率效率为0.63 W/A。比较了法布里-珀罗激光器、直线光栅分布式反馈(DFB)激光器和曲线光栅DFB激光器的光谱,结果表明,曲线光栅对半导体激光器的模式选择起到了关键作用,有利于实现高功率DFB激光器的窄线宽单模输出。该器件具有制作工艺相对简单、性能优异、可靠性高等特点,具有广阔的应用前景。 相似文献
3.
窄线宽LD泵浦双包层光纤激光器 总被引:5,自引:0,他引:5
报道了LD泵浦的窄线宽双包层光纤(DCF)激光器,从理论和实验数值模拟了激光输出功率对输出镜反射率,光纤长度和吸收泵浦功率的依赖关系,进而进行了实验,实验中选用光纤布拉格光栅(FBG)作为输入腔镜,利用光纤端面菲涅耳反射作为输出腔镜,得到了窄线宽的单模激光输出。最大输出功率421mW,斜率效率78.2%,激光中心波长1086.92nm,谱线宽度0.16nm。 相似文献
4.
5.
采用未泵浦掺铒光纤作为饱和吸收体压缩线宽,窄带高反光纤光栅作为波长选择器件,通过偏振控制器和偏振相关隔离器控制环形腔中行波的偏振态,利用反馈电路控制980 nm泵浦源的输入电流,以减小铒离子的弛豫振荡对光强波动带来的影响。研制的光纤激光器线宽小于8 kHz,相对强度噪声(RIN)10 kHz内小于-100dB/Hz,1 kHz处1 m程差干涉仪的相位噪声小于-120 dB/(Hz)1/2,长时间监测无跳模现象,输出激光功率稳定。 相似文献
6.
自由运行的半导体激光器由于谱线较宽而无法满足如拉曼散射等对线宽有要求的应用需求,因此获得线宽较窄、波长稳定的半导体激光器十分必要。采用反射式全息光栅作为谱线窄化元件,研究了在Littrow布局下的405 nm外腔半导体激光器。反射式全息光栅的加入,使得光栅面和半导体激光器的输出面组成耦合外腔,这在很大程度上改善了405 nm半导体激光器的线宽性能。实验结果表明,通过加入2400 line/mm的反射式全息光栅形成外腔反馈,半导体激光器的阈值电流由31 m A下降到22 m A,谱线宽度从自由运行时的1 nm减小到0.03 nm以下,实现了窄线宽输出,并且在工作电流为100 m A时,得到窄线宽半导体激光器的输出功率为28 m W,为自由运行半导体激光器输出功率的31.7%。此外,通过调节反馈光栅的角度,实现了较大电流范围的激光波长的连续调谐,最大调谐范围达3.5 nm。 相似文献
7.
利用光纤布拉格光栅(FBG)作为腔镜,研制了一种全光纤结构的掺Yb^2 光纤激光器。以泵浦波长978nm的LD作为抽运算,在1060.4nm波段获得了0.14nm的窄线宽激光输出。实验中发现掺Yb^3 光纤长度对激光器的阈值及输出功率均有影响,但光纤激光器的输出线宽保持不变。最大激光输出功率为2.36mW,斜率效率达到22.2%。 相似文献
8.
全光纤窄线宽脉冲激光器 总被引:2,自引:1,他引:2
介绍了一种全光纤窄线宽脉冲激光器。该激光器由两部分组成,即脉冲光纤激光器种子和由隔离器、耦合器以及光纤光栅组成的窄线宽脉冲提取装置。脉冲光纤激光器种子是基于半导体可饱和吸收镜(SESAM)为锁模机制的全光纤被动锁模激光器,输出脉冲的光谱宽度约为3 nm。窄线宽脉冲提取部分对脉冲光纤激光器种子输出脉冲的光谱进行提取、窄化,输出脉冲的光谱宽度约为0.1 nm。该激光器操作简单、设备简易,为全光纤结构;不仅可以输出窄线宽光脉冲序列,而且同时还可以输出脉冲光纤激光器种子的光脉冲序列,极大地拓展了脉冲光纤激光器的应用范围。 相似文献
9.
单纵模窄线宽光纤激光器的研究 总被引:2,自引:0,他引:2
单纵模窄线宽光纤激光器已经在石油勘探、光纤传感器和海底通信等领域得到很好的应用。目前可用于实现窄线宽输出的技术主要有使用基于光纤布拉格光栅(FBG)的线宽压缩结构、基于饱和吸收体的模式选择技术以及基于复合腔的激光器结构。为此着眼于如何实现激光器的单纵模窄线宽输出,技术上主要研究应用于两大腔体结构的线宽压缩技术,并在此基础上提出改进方案。 相似文献
10.
为了获得窄线宽、高功率、长波长(相对于1030nm~1080nm)的1120nm光纤激光器,采用普通单模掺镱光纤和一对光纤布喇格光栅构建了该光纤激光器的谐振腔,为保证抽运光的完全吸收和避免非线性效应,对有源光纤的最佳长度进行了理论分析和实验验证。结果表明,激光器的阈值抽运功率为40mW、注入抽运功率为265mW时,激光器输出信号光功率35mW,光光转换效率为13.2%,激光器中心波长为1120.9nm,输出激光的谱线宽度为0.03nm。这种激光器的获得是因为采用了高反射率耦合输出光纤布喇格光栅、短谐振腔结构和低功率运转状态。该激光器可作为种子光注入光纤放大器。 相似文献
11.
基于光纤光栅法布里-珀罗腔的高效窄线宽光纤激光器 总被引:12,自引:0,他引:12
报道了采用双光纤光栅(FBG)法布里-珀罗(F-P)腔选模的线形腔结构窄线宽光纤激光器。激光器以高掺杂Er~(3 )光纤为增益介质,利用全光纤型法拉第旋转器(FR)抑制空间烧孔效应,通过两个短光纤光栅法布里-珀罗腔选模,产生了稳定的1534.83 nm单频激光输出。激光器采用两支976 nm单模激光二极管(LD)抽运,两端输出。激光器阈值抽运光功率为12 mW,在总抽运光功率为145 mW时总输出信号光功率为39.5 mW,单端最高输出信号光功率为22 mW。光-光转换效率为27%,斜率效率为29.7%。随着抽运功率的增加,激光器输出功率趋于饱和。采用延迟自外差方法精确测量光纤激光器线宽,实验中使用了15 km单模光纤延迟线,由于测量精度的限制,得到激光器的线宽小于7kHz。这种光纤激光器具有输出功率高、线宽窄、信噪比高的特点,可用于高精度的光纤传感系统。 相似文献
12.
13.
在介绍环形腔掺铒光纤激光器原理的基础上,对其功率及其线宽进行了研究,测得的激光光谱3dB带宽及其输出功率分别为0.05nm和45mW,明显高于文献[2]0.1nm和22.66mW的报道,最后分析了铒纤长度与阈值及输出功率的关系。 相似文献
14.
高功率窄线宽光纤放大器及放大线宽特性 总被引:2,自引:0,他引:2
研制了高功率窄线宽光纤放大器.该放大器采用双级放大结构,其中第一级预放为掺Er3+光纤放大器,第二级功率放大采用10 m长的Er3+/Yb3+共掺双包层光纤作为增益介质,抽运源采用两支波长为980 nm的大功率激光二极管.当抽运功率为10.7 W时,得到放大激光输出功率为1.94 W,光一光转换效率为17%,斜率效率20%.采用延迟自外差方法对种子激光器及各级放大器输出的激光线宽进行了测量,测量结果表明窄线宽激光谱线经过掺Er3+光纤与双包层光纤放大后均有不同程度的明显展宽.分析认为激光线宽展宽的主要原因是由于种子激光器中弛豫振荡或自脉冲的强度波动引起的自相位调制. 相似文献
15.
1550 nm高效窄线宽光纤激光器 总被引:1,自引:0,他引:1
研制了一种采用双光纤光栅法布里-珀罗(FBG F-P)腔选模的线形腔结构窄线宽光纤激光器.激光器以高掺杂Er3 光纤为增益介质,结合非相干技术,利用全光纤型法拉第旋转器(FR)抑制空间烧孔效应,通过2个短FBG F-P腔选模,产生了稳定的1 550 nm单频激光输出.采用两端976 nm LD抽运方式,阈值抽运光功率为11 mW,在抽运光功率为145 mW时输出信号光功率为73 mW.光-光转换效率为50%,斜率效率达55%.采用延迟自外差方法精确测量光纤激光器线宽,实验中使用了10 km单模光纤延迟线,由于测量精度的限制,得到线宽小于10 kHz.研究表明,这种光纤激光器具有输出功率高、线宽窄和信噪比高的特点,可用于高精度的光纤传感器系统. 相似文献
16.
17.
通过构建外腔半导体激光器的等效腔模型,并在修正的肖洛-汤斯线宽公式中引入外腔压窄因子,系统模拟了光纤光栅外腔半导体激光器的电流阈值特性和线宽特性.以等效腔模型为基础,综合考虑外腔压窄因子,利用修正后的肖恩-汤斯公式,使用Matlab对外腔激光器的阈值和线宽特性进行了系统的模拟.模拟结果表明:通过增加外腔反射率,可有效增加光子寿命并降低阈值载流子浓度,进而获得较低的阈值电流,对于0.81的外腔等效反射率,阈值电流低至3.83 mA;通过增加外腔反射率、耦合效率和外腔长度,可显著压窄线宽至千赫兹量级;此外,合理限制增益芯片尺寸也会压窄线宽.激光器工作电流为60 mA时,当外腔光栅反射率由0.1提高至0.9可使阈值电流由9.04 mA降低至4.01 mA,线宽由95.27 kHz降低至1.34 kHz;当外腔长度由2 cm增加至6 cm时,激光器线宽由3.20 kHz降低至0.36 kHz. 相似文献
18.
19.
《Photonics Technology Letters, IEEE》2008,20(17):1482-1484