首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
通过单因素和正交实验系统地研究在机械合金化过程中研磨体、研磨介质及球磨工艺参数等因素对高硅铝合金混合粉末粒径及形貌的影响作用.结果表明:球磨转速对机械合金化后粉末粒径有显著影响,且随着球磨转速的增加,粉末的中粒径逐渐增大和粒度的分布范围逐渐变宽、均匀性越差;在本实验条件下,采用聚氨酯球为研磨体、酒精为研磨介质、球磨时间12 h、球磨转速150 r/min、球料比15∶1条件下进行机械合金化可获得中粒径为5.78 μm且分布均匀的高硅铝合金混合粉体.  相似文献   

2.
以粒度分别为2.4μm和0.9μm的粗细WC和Co为原料,采用常规球磨和真空烧结制备了双尺度结构WC-6%Co硬质合金。利用XRD、SEM观察合金的物相变化及微观组织形貌,并通过对比分析密度、硬度、矫顽磁力、抗弯强度和断裂韧性等研究了球磨工艺对合金综合力学性能的影响。结果表明,随着球磨时间和球料比的增加,WC晶粒逐渐长大,合金的(0001)基面百分比例显著增加,同时■棱柱面比例降低。且相比于球磨时间,增加球料比更能破碎和活化细WC颗粒。预磨24 h、球料比4∶1及混合球磨24 h、球料比2∶1球磨条件下制备的合金综合性能达到最佳,其密度、硬度、矫顽磁力均较优异,抗弯强度最高达到3 250 MPa,同时断裂韧性为11.5 MPa·m~(1/2)。  相似文献   

3.
高能球磨和放电等离子体烧结制备超细WC-8Co硬质合金   总被引:2,自引:0,他引:2  
以0 .8 1μm的WC粉和1.3 5 μm的Co粉为原料,采用高能球磨制备了粉末比表面积为6.82m2 ·g- 1 ,粉末粒度为5 9.4nm的WC 8Co混合粉末。将此纳米粉末采用放电等离子体烧结(SPS)制备了WC晶粒度为0 .5~0 .6μm、硬度为HRA93 .5的超细硬质合金。研究了SPS烧结温度和添加晶粒抑制剂对显微组织与HRA硬度的影响。  相似文献   

4.
采用多重峰和双峰分离技术及计算机软件包,成功地进行了单一Mo峰的分离,测定和计算了球磨过程中粉末晶粒尺寸和晶格畸变随球磨时间的变化。随着球磨时间的延长,Mo-37.5%Si(原子分数)混合粉中的Mo粉晶粒尺寸减小,但变化速度减缓。经过15h的球磨后,可以得到纳米级合金粉末,经80h球磨后,晶粒尺寸下降到约7.6nm。另一方面,球磨造成的微观应变不大。  相似文献   

5.
以铜粉和碳粉为原料,按C-5%.Cu和C-8%.Cu配比分别高能球磨8 h,24 h,40 h。在H_2气氛下以300℃保温3 h对复合粉末进行退火处理。采用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)等分析手段对铜石墨机械合金化(MA)混合粉体微观组织结构进行分析。结果表明:铜-碳复合粉体在常温下高能球磨可得到Cu(C)亚稳态过饱和固溶体。随着球磨时间的延长,粉末粒度逐渐减小,为5~10μm。复合粉末中铜的衍射峰不断降低且宽化,并向低角区有微小偏移,碳的衍射峰也在逐渐降低。  相似文献   

6.
Mo(Si,Al)2粉末材料的机械合金化合成   总被引:1,自引:0,他引:1  
通过机械合金化由MoSi2,Mo和Al粉末合成了Mo(Si1-x,Alx)2粉末材料,用X射线衍射分析了相的变化和粉末的晶粒度,用扫描电镜观察球磨后的粉末形貌与粒度,并根据Burgio模式估算了生成Mo(Si,Al)2相的球磨能.结果表明MoSi2,Mo和Al混合粉经高能球磨5 h后生成了MoSi2和Mo(Si,Al)2,没有单质粉末剩余,也无Al-Mo中间相产生;球磨40 h后的粉末粒度为亚微米级,晶粒度在21 nm~40 nm之间,Mo(Si,Al)2相的机械合金化合成机理为类自蔓延反应,其生成所需的球磨能量约为15.4 kJ/g.  相似文献   

7.
将WO3、C和Mg粉末按摩尔比为1:1:3混合,在室温下用高能球磨法对其进行球磨,经XRD、SEM 和TEM分析表明, 在球磨到4.7 h时,WO3、石墨和镁之间发生氧化还原反应直接生成了WC和MgO粉末,之后随球磨时间的延长,粉末不断细化.球磨50 h后,得到WC晶粒度和颗粒度分别约为25 nm和100 nm的WC/MgO复合粉末.实验结果和热动力学分析表明,WC/MgO的合成是一个自蔓延反应过程,此反应可以在很短的时间内完成.  相似文献   

8.
Al/MoSi2复合粉末材料的机械合金化合成   总被引:3,自引:0,他引:3  
通过机械合金化和热处理制备了Al/MoSi2复合粉末,利用X射线分析了相的变化,并根据Burgio模式估算了生成Mo(Si,Al)2相的球磨能。结果表明:Al-Mo-Si混合粉在高能球磨过程中无Al-Mo中间相产生,Mo(Si,Al)2相的机械合金化机理为类自蔓延,其生成所需的球磨能量约为24.5-30.6kJ.g^-1,将球磨40h的Al-Mo-Si混合烃经1000℃热处理后可获得MoSi2(Al)固溶体或MoSi2和Mo(Si,Al)2复合材料。  相似文献   

9.
本文采用原料配比为3Ti/Si/2C/0.2Al(摩尔比)的单质混合粉体为原料,进行机械合金化(MA)和随后的放电等离子烧结(SPS),以制备高纯Ti3SiC2陶瓷,研究了球磨时间对放电等离子烧结制备Ti3SiC2的影响。结果表明,机械合金化混合粉体后,粉体颗粒明显细化。球磨10h,单质混合粉体会发生化学反应,生成TiC,Ti3SiC2混合粉体。继续球磨至20h,生成物混合粉体会显著细化。球磨时间对SPS烧结合成Ti3SiC2有显著的影响。球磨10h,即反应刚刚完毕,最有利于SPS合成致密高纯的Ti3SiC2,球磨时间较短(5h),对Ti3SiC2陶瓷的烧结促进作用不显著,而反应后继续延长球磨时间至20h,会降低烧结体中Ti3SiC2的纯度。采用球磨10h的粉体为原料,经850℃放电等离子烧结可获得纯度高达96%(质量分数,下同)的Ti3SiC2疏松块体,烧结温度提高到1100℃,可获得纯度为99.3%、相对密度高达98.9%的TiSiC致密块体。  相似文献   

10.
采用高能球磨法制备出了用于生产纳米晶稀土硬质合金的原料粉末。通过XRD、SEM和DTA等分析检测手段,研究了该纳米WC—Co—RE粉末的结构、形貌和相的变化。结果表明:高能球磨45h,可获得晶粒尺寸约为8.45mm的WC—Co—RE粉末;微量稀土的加入,有利于粉末晶粒的细化;在25~45h范围内,随着高能球磨时间的延长,粉末晶粒尺寸的减小趋势符合直线变化规律,且掺稀土粉末的晶粒尺寸比未掺稀土粉末的晶粒尺寸减小一半;高能球磨25h,粉末中Co相的X射线衍射峰消失。高能球磨ⅥE—Co—RE粉末的DTA曲线在597℃出现了一个尖锐的放热峰。高能球磨WC—Co—RE粉末固结之后,所制得合金的晶粒细小且机械性能较好。  相似文献   

11.
试验研究了超细WC-纳米Al_2O_3弥散强化Cu基复合材料粉末的机械球磨制备工艺。采用XRD、SEM、EDS等表征手段,研究了机械球磨过程WC/Al_2O_3/Cu粉末形貌、强化相WC与Al_2O_3分布形态、Cu基体晶粒尺寸的变化规律。通过室温压制试验,研究了所制备粉末的压制特性。结果表明:在球磨转速300 r/min、球料比10:1(质量比)的条件下,经过100 min球磨,可获得WC、Al_2O_3颗粒均匀分布的Cu基复合材料粉末,Cu基体晶粒尺寸细化到约0.4μm。机械球磨WC/Al_2O_3/Cu复合材料粉末具有较好的压制成形性,其压制特性可用黄培云双对数压制方程描述。  相似文献   

12.
研究了在氢气氛下机械球磨铸态Nd8Fe86B6合金, 使Nd-Fe-B合金发生歧化反应, 随后在一定温度下进行真空脱氢处理, 并通过粉末压制成形制备纳米双相稀土永磁体. 利用X射线衍射 (XRD)、透射电镜(TEM)、以及原子力显微镜(AFM)等测试手段, 对球磨过程中合金粉末吸氢岐化反应以及脱氢过程中相变及粉末形貌进行分析观察. 实验结果表明, Nd8Fe86B6合金中Nd2Fe14B相发生了吸氢并歧化反应, 球磨20h后获得了晶粒大小为10nm左右的Nd2H5、 FeB和α-Fe歧化组织, 氢化及岐化反应对粉末颗粒细化效果明显, 球磨20h后大部分颗粒尺寸约为70nm, 经过真空脱氢处理后颗粒尺寸约为135nm. 研究得出, 对球磨20h并在700℃下进行脱氢再结合处理获得的粉末进行室温下压制成形, 获得了晶粒组织约为25nm左右的复相组织, 通过振动样品磁强计(VSM)测得压制磁体的磁性能最高为 Br=0.72T, Hci=553kA/m, (BH)m=92.5kJ/m3.  相似文献   

13.
通过对粉体粒径和微观形貌的分析,作者研究了球磨过程中球料比、转速、球磨时间和分散剂PEG对WC粉体(D_(FSSS)=2μm)的影响.实验在行星式高能球磨机上进行,采用湿法球磨,以无水乙醇为介质方式.结果表明,球料比过高将导致粉体不均匀化加剧,球料比由5∶1增加至10∶1,粒径降低约30%;提高转速可显著增大球磨效率,从150增加至250 r/min,粉体粒径减小约43%;随着球磨时间的延长,球磨效率逐渐降低,球磨前期效率较高,球磨8 h后粉体粒径细化约73%;然而,WC粉体在球磨12 h后发生团聚.添加PEG可明显达到分散效果,粉体粒径也相对较小.PEG/WC粉体经傅里叶变换红外光谱仪(FT-IR)分析,表明PEG在球磨过程中会逐渐反应裂解,研磨24 h后添加PEG将无分散效果.  相似文献   

14.
以喷射成形Fe-6.5Si过喷粉末为研究对象,采用OM、XRD、VSM、TEM等手段研究了不同球磨工艺条件下所得合金粉末的组织形貌及微观结构对软磁性能的影响,据此找到较佳的球磨工艺条件.结果表明:Fe-6.5Si合金过喷粉末在366 r·min~(-1)下球磨24 h后,平均晶粒尺寸为25.9 nm.球磨后粉末的磁性能受残余应力和晶粒尺寸的共同影响,在366r·min~(-1)下球磨18 h获得了最佳的磁性能,其饱和磁化强度为205.37 emu·g~(-1),矫顽力为30.096 Oe.  相似文献   

15.
以工业WC粉、Co粉和Cr_3C_2粉为原料,用行星式高能球磨机制备了WC-Co-Cr_3C_2复合粉末。采用X射线衍射、扫描电镜和光电子能谱等对粉末进行了分析。结果表明,球磨12h后复合粉末的粒度可达0.1μm左右,Co均匀分布且部分包覆在WC颗粒表面,处于亚固溶状态。  相似文献   

16.
粉浆浇注制备铁基梯度复合材料   总被引:3,自引:1,他引:2  
利用粉浆浇注-熔渗法制备Fe-WC-Cu复合材料,研究球磨时间、pH值和(NaPO3)6含量对粉浆流动性的影响.利用浇注方向上等距离位置硬度的变化,定性地研究WC的分布,并用金相结果进行佐证.结果表明:球磨时间为24 h,pH值为11,(NaPO3)6含量为0.5%时,粉浆具有最好的流动性;粉末装载量(质量分数)为75%时,样品具有最高的生坯密度;WC沿粉末沉降方向呈现明显的梯度分布,重力场和Clogging效应引起的颗粒偏析是导致梯度分布的原因;加入(NaPO3)6能提高浆料稳定性,阻止WC梯度的形成.  相似文献   

17.
利用烧结破碎法, 以粗颗粒(Fsss粒度为3.56μm)和超细颗粒(Fsss粒度为0.68μm)WC粉、 Co粉为主要原料制备了WC-12%Co热喷涂粉末. 用X-射线衍射和扫描电子显微镜(SEM)对粉末的形貌和结构进行了研究, 讨论了烧结温度、颗粒大小、有机粘结剂、碳粉对粉末特性的影响. 实验结果表明: 原始粉末颗粒大小影响粉末的烧结状态和相组成; 添加有机粘结剂能促进粉末的烧结; 添加碳粉(主要以游离态存在), 可有效抑制超细WC粉烧结时η(Co3W3C)等有害相的出现; 1250℃是制备超细WC-12%Co热喷涂粉末较好的烧结温度.  相似文献   

18.
采用与大批生产相同的WC和Co原料进行YG类硬质合金ZD10制备的小批试验,通过金相组织观察及截线法分析大小批料生产合金的粒度,并对大小批硬质合金的矫顽磁力和钴磁进行检测。对比了大小批料的研磨效率,并分析了大小批研磨效率差异的影响因素。相同球磨工艺条件下球磨24h后,小批料的研磨效率更高,其HCP值比大批料平均高出0.025(kA/m)/h;小批料球磨18h与大批料球磨24h的研磨效率相当;将大批生产的球磨时间确定在24h,各批次合金的矫顽磁力平均值为11.36kA/m,正好是内控标准(10.4~12kA/m)的中间值,能够满足用户的需求。合金棒填充系数、磨筒转速、磨筒内部构造等均是大小批料研磨效率差异的影响因素。  相似文献   

19.
通过热重分析(TGA)研究TiH2粉末粒度对其脱氢温度及脱氢量的影响,采用热膨胀仪研究粉末粒度对TiH2压坯收缩率的影响,同时利用真空烧结炉研究成形压力和温度对TiH2压坯烧结脱氢的影响。结果表明:TiH2粉末粒度越细,起始脱氢的温度越低;与粒度约为45μm的原料TiH2粉相比,经过球磨的粉末脱氢量减小;球磨30 min后的TiH2粉末压坯,烧结线收缩率和收缩速率都显著增大;原始TiH2粉末压坯和球磨30 min后粉末压坯的最大收缩率分别为5%和9.5%,最大收缩速率分别为2.4×10-4和7.30×10-4μm/℃;成形压力越大,TiH2压坯脱氢峰值温度越高,650℃保温1 h,TiH2压坯失重率达到3.572%(理论含氢量为4.01%)。  相似文献   

20.
将Fe粉、Cu粉、Ni粉、Mo粉、C粉和WC粉混合,球磨40h后进行放电等离子烧结,制备WC颗粒增强Fe基合金,研究WC颗粒对球磨后粉末的形貌、相组成,以及WC颗粒含量(质量分数)对烧结合金显微组织和力学性能的影响。结果表明:WC颗粒在球磨过程中起加强研磨的作用,经过40 h球磨后,Cu、Ni、Mo和C等合金元素完全固溶于Fe基体中。WC颗粒的添加有助于得到组织均匀、细小的Fe基合金,合金的微观组织以粒状珠光体为主,含有一定量的残余奥氏体、渗碳体/碳化物及WC颗粒;不含WC颗粒的合金和含10%WC颗粒的合金密度分别为7.79 g/cm3和8.09 g/cm3,均接近全致密。添加10%WC颗粒的合金具有较好的综合力学性能,硬度和抗弯强度分别达到54 HRC和2 780 MPa,比不含WC颗粒的合金硬度和抗弯强度分别提高6 HRC和488 MPa。但过多的WC颗粒反而使合金的抗弯强度下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号