首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于光学显微镜、场发射电镜组织分析及系列力学性能测试,研究了固溶处理对燃气轮机用GH4720Li合金组织特征的影响,分析了组织特征与力学性能的关联性.结果表明:随着固溶温度的升高和固溶时间的增加,合金一次γ'相回溶,平均晶粒尺寸增加,当固溶温度高于1160℃,晶粒尺寸增大明显.GH4720Li合金的力学性能变化规律如下...  相似文献   

2.
分析了GH2787合金不同热处理制度对持久性能和纵低倍的影响。结果表明,GH2787合金750℃+290MPa的持久性能随固溶温度、时效温度、时效时间的增加而提高。纵低倍晶粒尺寸随固溶温度提高而增大。从而制定了保证性能合格合理的热处理制度。  相似文献   

3.
本文通过G H4169合金在不同热处理工艺条件下的固溶和时效处理实验,研究了固溶温度和时效温度对合金的微观组织和性能的影响.结果表明:720℃时效处理工艺下,1050℃以上固溶处理,晶粒明显细化,1100℃下晶粒最细,随着固溶处理温度的升高,时效析出的第二相含量增加;620℃时效处理工艺下,1050℃固溶时效析出相的含...  相似文献   

4.
蒋世川  张健  刘庭耀  赖宇 《钢铁钒钛》2019,40(5):150-156
研究了固溶温度和保温时间对GH3128合金奥氏体晶粒长大的影响。结果表明:随着固溶温度的升高和保温时间的延长,奥氏体晶粒尺寸逐渐增大;与保温时间相比,加热温度对晶粒尺寸的影响更显著;当固溶温度≥1 180℃时,随着温度的升高或保温时间的延长奥氏体晶粒长大速率明显加快,当固溶温度1 180℃时,保温时间对奥氏体晶粒的长大影响较小;通过线性回归分析建立了GH3128合金在不同固溶温度和保温时间下的晶粒长大模型。  相似文献   

5.
利用热力学计算软件JMatPro分析了钍基熔盐堆用Ni-Cr-Mo系高温合金GH3535相析出的热力学及动力学特征,研究了不同热处理制度对冷轧态GH3535合金无缝管的晶粒尺寸及其均匀性、碳化物析出特征、硬度、拉伸性能等的影响规律,观察了不同热处理制度下合金拉伸断口的微观形貌,分析了GH3535合金的拉伸断裂机制. 结果表明:在900~1500℃之间,GH3535合金的平衡析出相为富Mo的M6C型碳化物,M6C相在固液两相区时便已经开始形成,M6C相析出所对应的鼻尖温度为1200℃;固溶温度低于1200℃时,合金晶粒尺寸缓慢长大,当固溶温度提高到1230℃,晶粒出现快速长大,平均晶粒尺寸达到160 μm;1180℃保温10 min,合金晶粒尺寸的均匀性较好. 随着固溶温度升高,合金强度降低、延伸率增加,GH3535合金的拉伸断裂机制为微孔聚集型.  相似文献   

6.
侯少林  于腾  宋彬  齐超  王飞 《特殊钢》2021,42(6):77-79
研究了时效硬化型GH2696合金在不同热处理工艺下的微观组织演变及硬化行为。结果表明,随着固溶温度提高,GH2696合金基体的过饱和度增加。经1100 ℃ 2 h固溶的GH2696合金γ′相在780 ℃ 16 h时效处理时析出,导致硬度显著提高。650 ℃ 16 h低温时效处理起到补充时效硬化的作用,其HBW硬度值为350。  相似文献   

7.
研究了β单相区不同的固溶温度对Ti-55531合金片层组织参数及力学性能的影响规律。结果表明,经不同温度固溶处理,再经相同的时效处理后,合金的β晶粒尺寸随固溶温度的改变而改变,进而影响时效析出α片的含量及尺寸,最终导致合金力学性能的差异。当固溶温度在830~900℃之间时,随着固溶温度的升高,原始β晶粒尺寸增大,后续时效析出的α片长、宽及长宽比均先增大后减小,合金强度直线下降,塑性先降低后增加。固溶温度为860℃时,合金对应的强度塑性匹配最好。合金的断裂失效机制为以微孔聚集为主,沿晶开裂和穿晶断裂并存的混合断裂机制。  相似文献   

8.
研究了GH 2787合金在不同固溶温度处理后的组织性能.结果表明,在900、940和980℃固溶处理时,GH 2787合金的晶粒尺寸分别为20、30和40μm.当固溶温度低于γ'溶解温度时,GH 2787合金中的γ'相分布均匀,并有少量针状的η相出现.900℃固溶处理时,GH 2787合金硬度、屈服强度和拉伸强度最高.GH 2787合金的主要强化方式为γ'相沉淀强化和晶界强化.  相似文献   

9.
固溶时效工艺对Cu-Ni-Si合金组织和性能的影响   总被引:2,自引:0,他引:2  
用扫描电镜(SEM)、硬度计、涡流电导率测量仪和万能试验机测试分别测量了在850 ~950℃固溶温度及400 ~ 500℃时效不同时间下对Cu-1.5 Ni-0.6Si合金硬度及电导率性能的影响,用金相显微镜观察不同固溶温度下合金的组织.并对合金拉伸形貌断口进行了分析.探讨了合金的强化机理.结果表明:时效前随着固溶温度的升高,材料的硬度及电导率均随之下降,但电导率下降的幅度很小.随着固溶温度的增加,其再结晶程度越来越高,到900℃时组织已是完全再结晶组织,温度继续升高,晶粒会发生长大.时效析出为Cu-1.5 Ni-0.6Si合金的主要强化手段.Cu-1.5Ni-0.6Si固溶后经不同温度时效后,时效初期硬度和电导率快速上升.随后硬度到达峰值后缓慢下降,而电导率继续上升.经过900℃×1h水淬+450℃×2h空冷处理后,合金得到良好的综合性能;其抗拉强度为780.7 MPa,伸长率为15.1%,电导率为40.2% IACS.  相似文献   

10.
固溶温度对改型Inconel 718合金组织和性能的影响   总被引:1,自引:0,他引:1  
用X-射线衍射法(XRD)和扫描电镜(SEM)研究了960~1020℃固溶+720℃8 h炉冷至620℃8 h空冷(二次时效)处理的改型718合金的力学性能和组织。结果表明,随固溶温度的提高。合金室温和350℃强度降低,塑性和韧性显著提高。随固溶温度升高,合金中强化相η数量减少,1000℃时完全消失;强化相γ′+γ″随固溶温度升高而增加,达到1000℃时最多。固溶+二次时效后,大部分γ′尺寸为10~18 nm。  相似文献   

11.
本文根据GH99镍基合金γ′的数量、尺寸、组成和错配度,以及合金的硬度和屈服强度等随时效温度变化的规律,指出该合金的时效峰为800℃,低于和高于800℃分别为欠时效和过时效。又根据时效温度与持久性能的关系,指出使用温度低于800℃时,该合金可进行800℃×8h 的时效热处理,若使用温度高于800℃,则无须进行时效热处理,只进行固溶处理即可。  相似文献   

12.
王立亚  郑友平  杨柳   《钛工业进展》2022,39(3):22-28
对Ti-3Al-5Mo-4Cr-2Zr-1Fe(Ti-35421)合金进行了不同工艺的固溶时效处理,研究了热处理后的组织演变规律与力学性能。结果表明:经不同温度固溶+540℃时效后,随着固溶温度的升高,初生α相板条变短变粗,体积分数减少,针状次生α相体积分数增加,Ti-35421合金的强度增加,塑韧性减小,拉伸断口表面韧窝数量减少、尺寸变小,逐渐出现微孔和空洞;经775℃固溶+不同温度时效后,随着时效温度的升高,针状次生α相变短变粗,次生α相间距增大,合金的强度减小,塑韧性增加,拉伸断口表面韧窝逐渐变大变深,微孔和空洞逐渐消失。当热处理工艺为775℃/1 h/AC+560℃/16 h/AC时,Ti-35421合金的抗拉强度为1125 MPa,屈服强度为1024 MPa,延伸率为5.5%,冲击吸收功为36.3 J,具有良好的强塑韧性匹配。  相似文献   

13.
研究了Cu-3.2Ni-0.75Si-0.3Zn合金时效前固溶温度和时间对该合金硬度及电导率的影响,并且分析了不同固溶条件之后时效对Cu-3.2Ni-0.75Si-0.3Zn合金性能的影响。结果表明:时效前固溶温度的升高,材料的电导率先较快下降,之后又回升,而硬度呈下降的趋势,当固溶温度到达925℃时,硬度下降缓慢;随着固溶温度的增加,其再结晶程度越来越高,到900℃时组织已是完全再结晶组织,温度继续升高,晶粒会发生长大;通过扫描电镜及能谱分析仪观察900℃固溶后的试样,发现只有少量析出相存在。而相对于固溶温度,固溶时间对合金性能的影响不明显。在不同固溶制度下,合金试样经冷变形和时效后,其电导率随固溶温度的升高先降后升,而抗拉强度和延伸率随固溶温度的升高会先升高后下降,固溶温度为925℃时试样的抗拉强度到达峰值,延伸率则在850℃时达到峰值。与其他固溶处理制度相比,合金在900℃×60 min固溶处理,经60%的冷变形,450℃×4 h时效处理后,可得到较好的综合性能。此时,合金抗拉强度达到762 MPa,延伸率为6.1%,电导率为32.5%IACS。  相似文献   

14.
β21s钛合金棒材热处理研究   总被引:1,自引:0,他引:1  
研究固溶时效热处理对β21s钛合金棒材显微组织和力学性能的影响。结果表明:在固溶温度一定时,随着时效温度的升高(从540,550到560℃),合金的强度下降,而塑性则有所上升;在时效温度一定时,随着固溶温度的升高(从750,770,790到800℃),合金强度先有所升高(在790℃时达到峰值),而后又有所降低,而塑性则逐步降低。  相似文献   

15.
研究了固溶温度、时效温度、时效时间对Ti-6Cr-5V-5Mo-4Al-1Nb(Ti-65541)合金显微组织与力学性能的影响。结果表明,在β相变点以上固溶并时效后,合金中析出细小的次生α相,初生α相完全消失;在较低温度固溶并时效后,次生α相和初生α相同时存在。时效温度对合金强度和塑性的影响最为显著,固溶温度次之,时效时间的影响最弱。随着时效温度的升高,合金的抗拉强度和屈服强度降低,塑性提高。随着固溶温度的提高,合金的强度提高,塑性降低。随着时效时间的延长,合金强度和塑性总体呈降低趋势。在740~760℃范围内固溶处理,在540~580℃范围内时效且时效时间在4~6 h内,可获得综合性能优异的Ti-65541合金。  相似文献   

16.
文章借助光学显微镜、扫描电镜和室温拉伸机,研究了不同固溶和时效温度对TB9钛合金棒材显微观组织、力学性能及断口形貌的影响。结果表明:在时效温度相同的条件下,随着固溶温度的升高,β相晶粒尺寸增加,抗拉强度和屈服强度呈下降趋势,延伸率和面缩率变化较小;在相同固溶处理工艺条件下,随着时效温度的升高,β相晶粒尺寸增加,在高于510℃时效后,β相晶内和晶界处出现了大量α析出相,抗拉强度和屈服强度显著降低,延伸率和面缩率显著提高;随着固溶温度的增加,相同时效温度处理的断口形貌由韧窝状塑性断裂逐渐向脆性断裂转变,韧窝含量减小,沿晶断裂的含量增加。  相似文献   

17.
为充分挖掘沉淀强化型镍基高温合金GH4202管材性能,以满足我国航天新型发动机的要求,研究了固溶处理温度对合金组织及拉伸性能的影响规律.结果表明,在1 050~1 075℃范围固溶处理后合金晶粒度无明显变化,当固溶温度升至1 100℃时,合金局部出现异常晶粒长大,当固溶温度达到1 150℃时,合金晶粒均匀长大.随固溶温度升高,合金晶界硼、碳化物数量明显减少,由链状向孤立的颗粒状转变.随固溶温度升高,GH4202合金室温及高温拉伸强度均呈降低趋势,尤其以屈服强度降低幅度最为显著.合金的室温面缩率随固溶温度升高而降低,且降低幅度较大,但室温断裂延伸率变化并不显著;700℃下合金的断面收缩率与断裂延伸率随固溶温度的变化均表现为先升高后降低的趋势.GH4202合金最佳固溶处理工艺为1 110℃保温30 min后水冷,此时合金晶粒度为5.0级、晶界碳化物呈细小链状,晶内沉淀强化γ'相弥散析出,可保证合金具有优异的室温及高温力学性能.  相似文献   

18.
利用光学显微技术(OM)和扫描电子显微技术(SEM)研究了Ti-3Al-2Fe-8V-1.5Mo合金在两相区和单相区固溶时效工艺下固溶温度、时效温度和时间对合金显微组织、拉伸性能和断口形貌的影响。结果表明:该合金经过固溶时效处理后的显微组织主要由α相和β相组成。随固溶温度升高,初生α相(α_p)体积分数减小,次生α相(α_s)含量增加;在相同的固溶条件下,随着时效温度和时间延长,α_s相尺寸增大,晶界α相变宽。单相区固溶时效处理后,α_s相以一定的取向关系沿着晶界弥散析出。与两相区固溶时效相比,单相区固溶时效后析出的α_s相弥散度较高、尺寸较小,强化效果更明显。α_p和α_s相会影响合金性能,随固溶温度降低、时效温度和时间增加,合金强化效应减弱,但塑性提高。通过观察拉伸断口形貌发现:合金在两相区固溶时效后以韧性断裂为主,在单相区固溶时效后以延性沿晶断裂方式为主。  相似文献   

19.
为制备高强度耐高温的高温合金弹簧,以固溶冷拉的GH4090高温合金弹簧丝为母材,在550~750℃范围内进行了时效处理。研究了时效工艺对GH4090高温合金弹簧丝的微观组织结构的影响,分析了γ′强化相对其纯扭力学性能的影响。结果表明,当时效温度在650℃以下时,随着时效温度的升高,γ′相的含量增加,但尺寸变化不大,室温抗扭强度提升。当时效温度大于650℃时,γ′相明显粗化,体积分数降低,室温抗扭强度逐渐下降。另外,二阶时效处理可以获得更细化和更高体积分数的γ′相、从而表现出更高的抗扭强度与硬度。650℃×8 h(50℃/h速率冷却)+550℃×8 h (空冷)的二阶时效工艺可以合理有效地调控微观组织结构,使GH4090合金弹簧丝表现出优良的综合力学性能。室温抗扭强度达到1 373.4 MPa,并且在500℃的测试温度下保持较高抗扭强度。  相似文献   

20.
合理的热处理制度能显著影响β钛合金的显微组织和强化行为。通过对一种新型Ti-Al-V-Mo-Cr-Zr-Nb-Fe亚稳β钛合金的固溶时效处理,研究了热处理工艺对该合金组织与力学性能的影响。结果表明:该合金720℃固溶处理后,可以获得单一均匀的等轴β晶粒,为最佳固溶温度;经440~520℃时效处理后,发现时效温度对该新型合金α相析出的形态与尺寸的影响显著:在较低温度440℃时效时β基体上有针状α相析出,平均晶粒尺寸在1~2μm左右;较高温度520℃时效时,α相宽度和片层间距都增大,α相尺寸长大到3~5μm,针状α相向短棒状转化。在实验温度范围内,随着时效温度升高,合金强度降低,塑性增加。720℃固溶较低温度时效合金可获得较好的强度与韧性匹配。该合金理想的热处理工艺参数为720℃/30 min、空冷(AC)+440℃/12 h、空冷(AC),由此可获得到良好的综合性能(抗拉强度UTS=1412.8 MPa,屈服强度YS=1309.4 MPa,延伸率A=8.56%,断面收缩率Z=44.94%)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号