共查询到20条相似文献,搜索用时 46 毫秒
1.
Acinetobacter haemolyticus, a Gram-negative aerobic locally isolated bacterium, immobilized on wood-husk showed the ability to detoxify Cr(VI) to Cr(III). Wood-husk, a natural cellulose-based support material, packed in an upward-flow column was used as support material for bacterial attachment. Around 97% of the Cr(VI) in wastewater containing 15 mg L(-1) of Cr(VI) was reduced at a flow rate of 8.0 mL min(-1). The wastewater containing Cr(VI) was added with liquid pineapple wastewater as nutrient source for the bacteria. Electron microscopic examinations of the wood-husk after 42 days of column operation showed gradual colonization of the wood-husk by bacterial biofilm. The use of 0.1% (v/v) formaldehyde as a disinfecting agent inhibited growth of bacteria present in the final wastewater discharge. This finding is important in view of the ethical code regarding possible introduction of exogenous bacterial species into the environment. 相似文献
2.
Tsibakhashvili NY Frontasyeva MV Kirkesali EI Aksenova NG Kalabegishvili TL Murusidze IG Mosulishvili LM Holman HY 《Analytical chemistry》2006,78(18):6285-6290
Epithermal neutron activation analysis (ENAA) has been applied to study elemental composition of Cr(VI)-reducer bacteria isolated from polluted basalts from the Republic of Georgia. Cr(VI)-reducing ability of the bacteria was examined by electron spin resonance, demonstrating that the bacteria differ in their rates of Cr(VI) reduction. A well-pronounced correlation between the ability of the bacteria to accumulate Cr(V) and their ability to reduce Cr(V) to Cr(III) observed in our experiments is discussed. Elemental analysis of these bacteria also revealed that basalt-inhabiting bacteria are distinguished by relative contents of essential elements such as K, Na, Mg, Fe, Mn, Zn, and Co. A high rate of Cr(III) formation correlates with a high concentration of Co in the bacterium. ENAA detected some similarity in the elemental composition of the bacteria. The relatively high contents of Fe detected in the bacteria (140-340 microg/g of dry weight) indicate bacterial adaptation to the environmental conditions typical of the basalts. The concentrations of at least 12-19 different elements were determined in each type of bacteria simultaneously starting with the major to ultratrace elements. The range of concentrations spans over 8 orders of magnitude. 相似文献
3.
Jingyi Qiu Ziyue Wang Huibo Li Ling Xu Jing Peng Maolin Zhai Chao Yang Jiuqiang Li Genshuan Wei 《Journal of hazardous materials》2009
Silica-based adsorbent was prepared by radiation-induced grafting of dimethylaminoethyl methacrylate (DMAEMA) onto the silanized silica followed by a protonation process. The FTIR spectra and XPS analysis proved that DMAEMA was grafted successfully onto the silica surface. The resultant adsorbent manifested a high ion exchange capacity (IEC) of ca. 1.30 mmol/g and the Cr(VI) adsorption behavior of the adsorbent was further investigated, revealing the recovery of Cr(VI) increased with the adsorbent feed and the equilibrium adsorption could be achieved within 40 min. The adsorption capacity, strongly depended on the pH of the solution, reached a maximum Cr(VI) uptake (ca. 68 mg/g) as the pH was in the range of 2.5–5.0. Furthermore, even in strong acidic (4.0 mol/L HNO3) or alkaline media (pH 11.0), the adsorbent had a sound Cr(VI) uptake capacity (ca. 22 and 30 mg/g, respectively), and the adsorption followed Langmuir mode. The results indicated that this adsorbent, prepared via a convenient approach, is applicable for removing heavy-metal-ion pollutants (e.g. Cr(VI)) from waste waters. 相似文献
4.
This paper compared the effectiveness of four organic materials for decreasing the amounts of soil extractable Cr(VI) in Cr(VI)-contaminated soils using the DOWEX M4195 resin-extraction method. Organic matters were added into Cr(VI)-spiked soils [500 mg Cr(VI)(kgsoil)(-1)] in the form of sugarcane dregs compost (SCDC), cattle-dung compost (CDC), soybean meal (SBM) and rice bran (RB), in the amounts of 0, 1%, and 2% by dry weight, respectively. The results indicated that adding only 1% organic matter to the studied soils could effectively decrease the amount of soil resin-extractable Cr(VI) after 12 days of incubation. The decrease of resin-extractable Cr(VI) by organic materials was mainly the result from the reduction of Cr(VI) to Cr(III) supported by the XANES spectroscopy. Among the four tested organic materials, SBM and RB had higher effectiveness in decreasing soil resin-extractable Cr(VI) than CDC and SCDC. This result may be due to the fact that SBM and RB have more dissolved organic carbon (DOC) and protein than CDC and SCDC. Therefore, it was concluded that the contents of DOC and protein are the main factors that determine the effectiveness of organic materials for decreasing the amounts of soil available Cr(VI) in Cr(VI)-contaminated soils. 相似文献
5.
The aim of this study is to prepare ion-imprinted polymers, which can be used for the selective removal of Cr(VI) anions from aqueous media. 4-Vinyl pyridine (4-VP) was used as functional monomer. The Cr(VI)-imprinted poly(4-vinyl pyridine-co-2-hydroxyethyl methacrylate), poly(VP-HEMA), particles were prepared by bulk polymerization. The Cr(VI)-imprinted polymer particles were grained from the bulk polymer, and the template ions (i.e., Cr(VI)) were removed using thiourea (0.5%, v/v) in 0.5M HCl. The Cr(VI)-imprinted polymer contained 21.4 μmol 4-VP/g polymers. The specific surface area of the IIP2 particles was found to be 34.5m(2)/g (size range of 75-150 μm), and the swelling ratio was about to 108%. The effect of initial concentration of Cr(VI) anions, the adsorption rate and the pH of the medium on adsorption capacity of Cr(VI)-imprinting polymer were studied. The maximum experimental adsorption capacity was 3.31 mmol Cr(VI)/g polymer. Under competitive condition, the adsorption capacity of Cr(VI)-imprinted particles for Cr(VI) is 13.8 and 11.7 folds greater than that of the Cr(III) and Ni(II) ions, respectively. The first- and second order kinetics models were estimated on the basis of comparative analysis of the corresponding rate parameters, equilibrium capacity and correlation coefficients. The Langmuir adsorption isotherm model was well described the Cr(VI)-imprinted system and the maximum adsorption capacity (Q(max)) was found to be 3.42 mmol/g. Moreover, the reusability of the poly(VP-HEMA) particles was tested for several times and no significant loss in adsorption capacity was observed. 相似文献
6.
The adsorption of Cr(VI) from aqueous solutions on sawdust (SD), base extracted sawdust (BESD) and tartaric acid modified sawdust (TASD) of Turkish red pine tree (Pinus nigra), a timber industry waste, was studied at varying Cr(VI) concentrations, adsorbent dose, modifier concentration and pH. Batch adsorption studies have been carried out. Sawdust was collected from waste timber industry and modified with various amount of tartaric acid (TA) (0.1-1.5M). The batch sorption kinetics has been tested and the applicability of the Langmuir and Freundlich adsorption isotherms for the present system has been tested at 25+/-2 degrees C. Under observed test conditions, the equilibrium adsorption data fits the linear Freundlich isotherms. An initial pH of 3.0 was most favorable for Cr(VI) removal by all adsorbents. Maximum Cr(VI) was sequestered from the solution within 120 min after the beginning for every experiment. The experimental result inferred that chelation and ion exchange is one of the major adsorption mechanisms for binding metal ions to the SD. Percentage removal of Cr(VI) was maximum at the initial pH of 3.0 (87.7, 70.6 and 55.2% by TASD, BESD, and SD, respectively). Adsorption capacities range from 8.3 to 22.6 mg/g for SD samples. 相似文献
7.
Novel biosorbent 'maize bran' has been successfully utilized for the removal of Cr(VI) from aqueous solution. The effect of different parameters such as contact time, sorbate concentration, pH of the medium and temperature were investigated and maximum uptake of Cr(VI) was 312.52 (mgg(-1)) at pH 2.0, initial Cr(VI) concentration of 200mgL(-1) and temperature of 40 degrees C. Effect of pH showed that maize bran was not only removing Cr(VI) from aqueous solution but also reducing toxic Cr(VI) into less toxic Cr(III). The sorption kinetics was tested with first order reversible, pseudo-first order and pseudo-second order reaction and it was found that Cr(VI) uptake process followed the pseudo-second order rate expression. Mass transfer of Cr(VI) from bulk to the solid phase (maize bran) was studied at different temperatures. Different thermodynamic parameters, viz., DeltaG degrees , DeltaH degrees and DeltaS degrees have also been evaluated and it has been found that the sorption was feasible, spontaneous and endothermic in nature. The Langmuir and Freundlich equations for describing sorption equilibrium were applied and it was found that the process was well described by Langmuir isotherm. Desorption studies was also carried out and found that complete desorption of Cr(VI) took place at pH of 9.5. 相似文献
8.
Bioremediation of Cr(VI) in contaminated soils 总被引:5,自引:0,他引:5
Ex situ treatment of hexavalent chromium (Cr(VI)) contaminated soil using a bioreactor-biosorption system was evaluated as a novel remediation alternative. Leaching of Cr(VI) from the contaminated soil using various eluents showed that desorption was strongly affected by the solution pH. The leaching process was accelerated at alkaline conditions (pH 9). Though, desorption potential of ethylene diamine tetra acetic acid (EDTA) was the maximum among various eluents tried, molasses (5 g/L) could also elute 72% of Cr(VI). Cr(VI) reduction studies were carried out under aerobic and facultative anaerobic conditions using the bacterial isolates from contaminated soil. Cr(VI) reduction was moderately higher in aerobic conditions than in facultative anaerobic conditions. The effect of various electron donors on Cr(VI) reduction was also investigated. Among five electron donors screened, peptone (10 g/L) showed maximum Cr(VI) reduction followed by molasses (10 g/L). The time required for complete Cr(VI) reduction was increased with increase in the initial Cr(VI) concentration. However, specific Cr(VI) reduction was increased with increase in initial Cr(VI) concentration. Sulfates and nitrates did not compete with Cr(VI) for accepting the electrons. A bioreactor was developed for the detoxification of Cr(VI). Above 80% of Cr(VI) reduction was achieved in the bioreactor with an initial Cr(VI) concentration of 50 mg/L at an HRT of 8 h. An adsorption column was developed using Ganoderm lucidum (a wood rooting fungus) as the adsorbent for the removal of trivalent chromium (Cr(III)) and excess electron donor from the effluent of the bioreactor. The specific Cr(III) adsorption capacity of G. lucidum in the column was 576 mg/g. The new biosystem seems to be a promising alternative for the ex situ bioremediation of Cr(VI) contaminated soils. 相似文献
9.
We have developed a selective electrode for chromium(VI), based on a self-assembled monolayer of 4-(mercapto-n-alkyl)pyridinium on gold surfaces, which exhibits unique speciation capabilities. Cr(VI) levels as low as 1 parts per trillion can be detected using a 4-(mercaptoethyl)pyridinium monolayer. The different parameters that govern the analytical performance of these electrodes have been studied in detail and optimized. In addition, the organization of the monolayers has been examined by a variety of surface techniques such as XPS, FT-IR, and electrochemistry. Our results show that structuring and understanding the solid-liquid interface at the molecular level are essential for designing probes with superior analytical characteristics. 相似文献
10.
The potential use of the brown seaweed, Ecklonia, biomass as a bioreductant for reducing Cr(VI) was examined in a continuous packed-bed column. The effects of the operating parameters, such as influent Cr(VI) concentration, influent pH, biomass concentration, flow rate and temperature, on the Cr(VI) reduction were investigated. Increases in the influent Cr(VI) concentration and flow rate or a decrease in the biomass concentration inside the column led to a higher breakthrough of the Cr(VI) ions in the effluent. Particularly, the influent pH and temperature most significantly affected on the breakthrough curve of Cr(VI); a decrease in the influent pH or an increase in the temperature enhanced the Cr(VI) reduction in the column. For process application, a non-parametric model using neural network was used to predict the breakthrough curves of the column. Finally, the potential of the column packed with Ecklonia biomass for Cr(VI) detoxification was demonstrated. 相似文献
11.
Ramirez C M Pereira da Silva M Ferreira L SG Vasco E O 《Journal of hazardous materials》2007,146(1-2):86-90
Trivalent and hexavalent chromium continuous biosorption was studied using residual brewer Saccharomyces cerevisiae immobilized in volcanic rock. The columns used in the process had a diameter of 4.5 cm and a length of 140 cm, working at an inlet flow rate of 15 mL/min. Breakthrough curves were used to study the yeast biosorption behavior in the process. The saturation time (ts) was 21 and 45 h for Cr(III) and Cr(VI), respectively, and a breakthrough time (tb) of 4 h for Cr(III) and 5 h for Cr(VI). The uptake capacity of the biosorbent for Cr(III) and Cr(VI) were 48 and 60 mg/g, respectively. Two non-diffusional mathematical models with parameters t0 and sigma were used to adjust the experimental data obtained. Microsoft Excel tools were used for the mathematical solution of the two parameters used. 相似文献
12.
The combined carbon-activated sludge process has been proposed as an alternative to protect the biomass against toxic substances in wastewaters; however, the information about the effect of powdered-activated carbon (PAC) addition in activated sludge reactors for the treatment of wastewaters containing Cr(VI) is limited. The objectives of the present study were: (a) to evaluate the removal of hexavalent chromium by (i) activated sludge microorganisms in aerobic batch reactors, (ii) powdered-activated carbon, and (iii) the combined action of powdered-activated carbon and biomass; (b) to propose mathematical models that interpret the experimental results. Different Cr(VI) removal systems were tested: (S1) biomass (activated sludge), (S2) PAC, and (S3) the combined activated carbon-biomass system. A Monod-based mathematical model was used to describe the kinetics of Cr(VI) removal in the system S1. A first-order kinetics with respect to Cr(VI) and PAC respectively, was proposed to model the removal of Cr(VI) in the system S2. Cr(VI) removal in the combined carbon-biomass system (S3) was faster than both Cr(VI) removal using PAC or activated sludge individually. Results showed that the removal of Cr(VI) using the activated carbon-biomass system (S3) was adequately described by combining the kinetic equations proposed for the systems S1 and S2. 相似文献
13.
The effectiveness of ferrous iron and sodium dithionite for decreasing resin-extractable Cr(VI) in Cr(VI)-spiked alkaline soils 总被引:1,自引:0,他引:1
Ferrous iron, Na(2)S(2)O(4), and a mixture of Fe(II) and Na(2)S(2)O(4) (4:1 mol/mol) were tested for their effectiveness for decreasing resin-extractable Cr(VI) in alkaline Cr(VI)-spiked soils. The results indicated that adding those reductants greatly decreased the amount of resin-extractable Cr(VI) when the application rate of reductants equaled the number of equivalents of dichromate added to the Cr(VI)-spiked soils. This was mainly as a result of the Cr(VI) reduction into Cr(III), as supported by the XANES spectra. Among the tested reductants, a mixture of Fe(II) and Na(2)S(2)O(4) was the most effective to decrease resin-extractable Cr(VI). The extent to which resin-extractable Cr(VI) and soil pH were decreased was affected by the pH of the reductants. Among the tested reductants at various pH, FeSO(4) at pH below 1 was the most effective in decreasing resin-extractable Cr(VI) in alkaline soils. However, the soil pH was the most decreased as well. On the other hand, the mixtures of ferrous iron and dithionite at a wide range of pH were all efficient (>70% efficiency) in decreasing resin-extractable Cr(VI). Moreover, the extent of the decrease in soil pH was much smaller than that by FeSO(4) (pH<1) alone, and thus the possibility of the Cr(III) hazard can be avoided. 相似文献
14.
A method for sorption preconcentration of Cr(VI) from aqueous samples was developed using a polymer inclusion sorbent (PIS). The PIS used in this method was prepared by physical inclusion of Aliquat-336 in the matrix formed by cellulose triacetate and 2-nitrophenyl octyl ether. This sorbent was found to be stable, cost-effective, efficient for preconcentration of Cr(VI) present in the aqueous samples, and amenable to direct quantitative analysis of Cr(VI) held in it by neutron activation analysis and spectrophotometry. The quantifying of Cr(VI) in PIS by spectrophotometry was carried out by developing color directly on the PIS after reacting it with 1,5-diphenylcarbazide. The distinct color developed on the PIS even at very low concentrations of Cr(VI) suggests its possible use for field determination of Cr(VI). The composition of PIS was optimized to obtain maximum uptake of Cr(VI) without sacrificing uniformity in terms of thickness and distribution of ion-exchange sites, stability, and time required for quantitative sorption of Cr(VI) from aqueous samples. The Cr(VI) species held in the PIS, mainly HCrO4- and CrO4(2-), were found to vary as a function of pH of the aqueous samples from which Cr(VI) was preconcentrated. A close agreement was found in the abundances of Cr(VI) species held in the PIS with those reported in the literature for aqueous solutions at different pH. The variation of Cr(VI) species as a function of pH was found to have a significant impact on the tolerance to anions on the uptake of Cr(VI) in the PIS. The high selectivity of PIS toward Cr(VI) from aqueous solution at pH = 2 was explained on the basis of hydration of anions. The uptake of Cr(VI) was found to be fairly constant (88 +/- 3%) up to nearly complete exchange of counterions present in the PIS. The method developed in the present work was successfully used for the preconcentration of Cr(VI) from tap water and seawater samples containing low levels of Cr(VI). 相似文献
15.
Various chemical treatments have been applied to six brown, red and green seaweed species with a view to enhancing their metal removal for Cu(II), Cr(III) and Cr(VI). Treatment with acetone resulted in the greatest enhancement for both cationic and anionic species with relatively low mass losses (15–35%), indicating its low risk to biomass operational stability. Cation binding was increased by 69%, while the total Cr removal was augmented by 15%. Cr(VI) binding was shown to be an adsorption-coupled reduction, whereby Cr(VI) was bound to the biomass surface at pH 2 and subsequently reduced to Cr(III). Acetone treatment also resulted in biomasses that were capable of converting up to 83% of Cr(VI) in solution to Cr(III). Blocking of carboxyl and amino functionalities had significant negative effects both on total Cr removal as well as percentage conversion of Cr(VI) to Cr(III). Results therefore indicated the significant role played by these moieties in metal binding to these seaweeds. Potentiometric titrations displayed agreement between the degree of esterification and the decrease in Cu(II) removal for Ulva spp. and Polysiphonia lanosa. FTIR analysis identified changes in biomass functionality and availability after chemical modification, the results of which were in agreement with metal removal studies. In conclusion, these biosorbents represent suitable candidates to replace conventional removal technologies for metal bearing wastewaters, in particular for the detoxification of hazardous Cr(VI) waste streams. 相似文献
16.
Youwei Zhang Hui-Ling Ma Jing Peng Maolin Zhai Zhong-Zhen Yu 《Journal of Materials Science》2013,48(5):1883-1889
Chemically reduced and functionalized graphene oxide (GO) was prepared by refluxing of GO with ethylenediamine (ED) using dimethyl formamide (DMF) as solvent. It was confirmed that both ED and DMF contributed to the reduction and functionalization of GO. The resulting adsorbent (ED–DMF–RGO) with amine groups was highly efficient in removing Cr(VI) from its aqueous solution and could be easily separated by filtration. The optimum pH for total Cr removal was observed at pH 2.0 and the Cr(VI) removal capacity of ED–DMF–RGO at this pH was 92.15 mg g?1, which was about 27 times higher than that of activated carbon, even nearly 4–8 times higher than that of various modified activated carbons. The presence of other ions such as Na+, K+, Ca2+, Cl?, and Br? had little effect on the removal of Cr(VI). Interestingly, Cr(VI) was reduced to low-toxic Cr(III) during the adsorption process, which followed an indirect reduction mechanism. Both the Cr(VI) adsorption and subsequent reduction of adsorbed Cr(VI) to Cr(III) contributed to the Cr(VI) removal. The obtained ED–DMF–RGO may be applicable in Cr(VI) removal if they are produced on a large scale and at low price in near future. 相似文献
17.
A hydrous titanium(IV) oxide was prepared to study the adsorption characteristics and the separation of chromium species. Batch sorption studies have been carried out to determine the effect of pH on the sorption of Cr(III) and Cr(VI) on hydrous TiO2. An excellent separation efficiency of Cr(III) and Cr(VI) was obtained at pH 2. The adsorption percentage of Cr(VI) was above 99%, whereas that of the Cr(III) was less than 1% at this pH. The adsorption isotherm of Cr(VI) on hydrous TiO2 at pH 2 was in good agreement with the Langmuir isotherm. The maximum adsorption capacity of Cr(VI) on TiO2 was 5 mg g(-1). The rate of adsorption of Cr(VI) by hydrous TiO2 with average particle diameter 250 and 500 microm has been studied under particle diffusion controlled conditions. The diffusion coefficients of Cr(VI) for both hydrous TiO2 having average particle diameter of 250 and 500 microm was calculated at pH 2 as 3.84 x 10(-10) m2 s(-1) and 8.86 x 10(-10) m2 s(-1), respectively. 相似文献
18.
Poly(acrylic acid–dimethylaminoethyl methacrylate) was prepared by γ-radiation-induced copolymerization at a radiation dose of 60 kGy and a dose rate of 1.25 kGy h–1. The resin obtained was used to remove U(VI) from simulated solution of the waste from the Fuel Manufacturing Pilot Plant (FMPP). A preliminary test of U(VI) adsorption onto the resin showed high affinity of this resin for U(VI) ions. The adsorption behavior toward the U(VI) ions was studied in relation to the contact time, pH, temperature, resin dosage, and initial concentration of metal ions. The adsorption isotherms of uranium onto the resin were described using the Langmuir and Freundlich models, with the Langmuir model being more adequate to the experimental equilibrium data. Without foreign ions, the maximum adsorption capacity of the resin for U(VI) was 105.7 mg g–1. X-ray fluorescence was used to evaluate the amount of U(VI) ions on the resin sample before and after the adsorption. 相似文献
19.
The optimization of Cr(VI) reduction and removal by electrocoagulation using response surface methodology 总被引:2,自引:0,他引:2
Olmez T 《Journal of hazardous materials》2009,162(2-3):1371-1378
In this study Response Surface Methodology (RSM) was employed to investigate the effects of different operating conditions on the removal of hexavalent chromium (Cr(VI)) by the electrocoagulation with stainless steel electrodes. Central Composite Design (CCD) was used for the optimization of the electrocoagulation process and to evaluate the effects and interactions of process variables: applied electric current, electrolyte concentration and application time on the removal of Cr(VI). A sample of metal finishing industry wastewater having a high Cr(VI) concentration of 1470 mg/L was used in the experimental study. The optimum conditions for complete (100%) Cr(VI) removal were established as 7.4A applied electric current, 33.6 mM electrolyte (NaCl) concentration and 70 min application time. The amount of sludge produced under the conditions optimized based on the results from the model was lower than the amount generated by chemical treatment with FeSO(4).7H(2)O and non-hazardous in nature. 相似文献
20.
Surface-modified Phanerochaete chrysosporium as a biosorbent for Cr(VI)-contaminated wastewater 总被引:1,自引:0,他引:1
Chen GQ Zhang WJ Zeng GM Huang JH Wang L Shen GL 《Journal of hazardous materials》2011,186(2-3):2138-2143
To improve the removal efficiency of heavy metals from wastewater, the surface of a fungal biomass was modified to obtain a high-capacity biosorbent for Cr(VI) in wastewater. The effects of pH, initial concentration, and sorption time on Cr(VI) removal by polyethylenimine (PEI)-modified Phanerochaete chrysosporium were investigated. The biomass adsorption capacity was significantly dependent on the pH of the solution, and the optimum pH was approximately 3.0. The maximum removal for Cr(VI) was 344.8 mg/g as determined with the Langmuir adsorption isotherm. Pseudo-first-order Lagergren model is better than pseudo-second-order Lagergren model when simulating the kinetic experiment results. Furthermore, an amount of Cr(VI) was reduced to Cr(III), indicating that some reactions occurred on the surface of the biomass leading to the reduction of Cr(VI). The point of zero potential for the modified biomass increased from an initial pH of 3.0 to a much higher value of 10.8, indicating that the PEI-modified biomass is better than the pristine biomass for adsorption of anionic adsorbates. Results showed that the PEI-modified biosorbent presented high efficiency in treating Cr(VI)-contaminated wastewater. 相似文献