首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hafnium oxide (HfOx)‐based memristive devices have tremendous potential as nonvolatile resistive random access memory (RRAM) and in neuromorphic electronics. Despite its seemingly simple two‐terminal structure, a myriad of RRAM devices reported in the rapidly growing literature exhibit rather complex resistive switching behaviors. Using Pt/HfOx/TiN‐based metal–insulator–metal structures as model systems, it is shown that a well‐controlled oxygen stoichiometry governs the filament formation and the occurrence of multiple switching modes. The oxygen vacancy concentration is found to be the key factor in manipulating the balance between electric field and Joule heating during formation, rupture (reset), and reformation (set) of the conductive filaments in the dielectric. In addition, the engineering of oxygen vacancies stabilizes atomic size filament constrictions exhibiting integer and half‐integer conductance quantization at room temperature during set and reset. Identifying the materials conditions of different switching modes and conductance quantization contributes to a unified switching model correlating structural and functional properties of RRAM materials. The possibility to engineer the oxygen stoichiometry in HfOx will allow creating quantum point contacts with multiple conductance quanta as a first step toward multilevel memristive quantum devices.  相似文献   

2.
A simple analysis indicates that negative differential resistance (NDR) characteristics may be made possible by an intervalley electron-transfer process enhanced by Joule heating in semiconductors at low fields. The negative temperature coefficient of electronic mobility of semiconductors is also favorable to the achievement of NDR.  相似文献   

3.
Oxide‐based metal–insulator–metal structures are of special interest for future resistive random‐access memories. In such cells, redox processes on the nanoscale occur during resistive switching, which are initiated by the reversible movement of native donors, such as oxygen vacancies. The formation of these filaments is mainly attributed to an enhanced oxygen diffusion due to Joule heating in an electric field or due to electrical breakdown. Here, the development of a dendrite‐like structure, which is induced by an avalanche discharge between the top electrode and the Ta2O5‐x layer, is presented, which occurs instead of a local breakdown between top and bottom electrode. The dendrite‐like structure evolves primarily at structures with a pronounced interface adsorbate layer. Furthermore, local conductive atomic force microscopy reveals that the entire dendrite region becomes conductive. Via spectromicroscopy it is demonstrated that the subsequent switching is caused by a valence change between Ta4+ and Ta5+, which takes place over the entire former Pt/Ta2O5‐x interface of the dendrite‐like structure.  相似文献   

4.
This study addresses high electric field transport in multilayer black phosphorus (BP) field effect transistors with self‐heating and thermal spreading by dielectric engineering. Interestingly, a multilayer BP device on a SiO2 substrate exhibits a maximum current density of 3.3 × 1010 A m?2 at an electric field of 5.58 MV m?1, several times higher than multilayer MoS2. The breakdown thermometry analysis reveals that self‐heating is impeded along the BP–dielectric interface, resulting in a thermal plateau inside the channel and eventual Joule breakdown. Using a size‐dependent electro‐thermal transport model, an interfacial thermal conductance of 1–10 MW m?2 K?1 is extracted for the BP–dielectric interfaces. By using hexagonal boron nitride (hBN) as a dielectric material for BP instead of thermally resistive SiO2 (κ ≈ 1.4 W m?1 K?1), a threefold increase in breakdown power density and a relatively higher electric field endurance is obtained together with efficient and homogenous thermal spreading because hBN has superior structural and thermal compatibility with BP. The authors further confirm the results based on micro‐Raman spectroscopy and atomic force microscopy, and observe that BP devices on hBN exhibit centrally localized hotspots with a breakdown temperature of 600 K, while the BP devices on SiO2 exhibit hotspots in the vicinity of the electrode at 520 K.  相似文献   

5.
Understanding the electrothermal-mechanical behavior of electronic interconnects is of practical importance in improving the structural reliability of electronic devices. In this work, we use the finite-element method to analyze the Joule-heating-induced thermomechanical deformation of a metallic sphere that is sandwiched between two rigid plates. The deformation behavior of the sphere is elastic–perfectly plastic with Young’s modulus and yield stress decreasing with temperature. The mechanical stresses created by Joule heating are found to depend on the thermal and mechanical contact conditions between the sphere and the plates. The temperature rise in the sphere for the diathermal condition between the sphere and the plates deviates from the square relation between Joule heat and electric current, due to the temperature dependence of the electrothermal properties of the material. For large electric currents, the simulations reveal the decrease of von Mises stress near the contact interfaces, which suggests that current-induced structural damage will likely occur near the contact interfaces.  相似文献   

6.
The Joule heating properties of an ultralight nanocarbon aerogel are investigated with a view to potential applications as energy‐efficient, local gas heater, and other systems. Thermally reduced graphene oxide (rGO) aerogels (10 mg cm?3) with defined shape are produced via emulsion‐templating. Relevant material properties, including thermal conductivity, electrical conductivity and porosity, are assessed. Repeatable Joule heating up to 200 °C at comparatively low voltages (≈1 V) and electrical power inputs (≈2.5 W cm?3) is demonstrated. The steady‐state core and surface temperatures are measured, analyzed and compared to analogous two‐dimensional nanocarbon film heaters. The assessment of temperature uniformity suggests that heat losses are dominated by conductive and convective heat dissipation at the temperature range studied. The radial temperature gradient of an uninsulated, Joule‐heated sample is analyzed to estimate the aerogel's thermal conductivity (around 0.4 W m?1 K?1). Fast initial Joule heating kinetics and cooling rates (up to 10 K s?1) are exploited for rapid and repeatable temperature cycling, important for potential applications as local gas heaters, in catalysis, and for regenerable of solid adsorbents. These principles may be relevant to wide range of nanocarbon networks and applications.  相似文献   

7.
In the rapidly progressing field of organometal halide perovskites, the dimensional reduction can open up new opportunities for device applications. Herein, taking the recently synthesized trimethylsulfonium lead triiodide (CH3)3SPbI3 perovskite as a representative example, first‐principles calculations are carried out and the nanostructuring and device application of halide perovskite nanowires are studied. It is found that the 1D (CH3)3SPbI3 structure is structurally stable, and the electronic structures of higher‐dimensional forms are robustly determined at the 1D level. Remarkably, due to the face‐sharing [PbI6] octahedral atomic structure, the organic ligand‐removed 1D PbI3 frameworks are also found to be stable. Moreover, the PbI3 columns avoid the Peierls distortion and assume a semimetallic character, contradicting the conventional assumption of semiconducting metal‐halogen inorganic frameworks. Adopting the bundled nanowire junctions consisting of (CH3)3SPbI3 channels with sub‐5 nm dimensions sandwiched between PbI3 electrodes, high current densities and large room‐temperature negative differential resistance (NDR) are finally obtained. It will be emphasized that the NDR originates from the combination of the near‐Ohmic character of PbI3‐(CH3)3SPbI3 contacts and a novel NDR mechanism that involves the quantum‐mechanical hybridization between channel and electrode states. This work demonstrates the great potential of low‐dimensional hybrid perovskites toward advanced electronic devices beyond actively pursued photonic applications.  相似文献   

8.
Energy consumption is increasing with the rapid growth of externally powered electronics. A vast amount of energy is needed for indoor heating, and body heat is dissipated to the surroundings. Recently, wearable heaters have attracted interest for their efficiency in providing articular thermotherapy. Herein, the fabrication of a personal thermal management device with a self‐powering ability to generate heat through triboelectricity is reported. Composites are prepared with vertically aligned silver tipped nickel cobalt selenide (Ag@NixCo1?xSe) nanowire arrays synthesized on the surface of woven Kevlar fiber (WKF) sheets and reduced graphene oxide (rGO) dispersed in polydimethylsiloxane (PDMS). The Ag@NixCo1?xSe with rGO induces effective Joule heating in the composites (79 °C at 2.1 V). The WKF/Ag@NixCo1?xSe/PDMS composite shows higher infrared reflectivity (98.1%) and thermal insulation (54.8%) than WKF/PDMS. The WKF/Ag@NixCo1?xSe/PDMS/rGO composite has an impact resistance and tensile strength that are 152.2% and 92.1% higher, respectively, than those of WKF/PDMS. A maximum output power density of 1.1 mW cm?2 at a low frequency of 5 Hz confirms efficient mechanical energy harvesting of the composites, which enables self‐heating. The high flexibility, breathability, washability, and effective heat generation achieved during body movement satisfy the wearability requirement and can address global energy concerns.  相似文献   

9.
An all‐oxide transparent resistive random access memory (T‐RRAM) device based on hafnium oxide (HfOx) storage layer and indium‐tin oxide (ITO) electrodes is fabricated in this work. The memory device demonstrates not only good optical transmittance but also a forming‐free bipolar resistive switching behavior with room‐temperature ROFF/RON ratio of 45, excellent endurance of ≈5 × 107 cycles and long retention time over 106 s. More importantly, the HfOx based RRAM carries great ability of anti‐thermal shock over a wide temperature range of 10 K to 490 K, and the high ROFF/RON ratio of ≈40 can be well maintained under extreme working conditions. The field‐induced electrochemical formation and rupture of the robust metal‐rich conductive filaments in the mixed‐structure hafnium oxide film are found to be responsible for the excellent resistance switching of the T‐RRAM devices. The present all‐oxide devices are of great potential for future thermally stable transparent electronic applications.  相似文献   

10.
The ability to tailor a new crystalline structure and associated functionalities with a variety of stimuli is one of the key issues in material design. Developing synthetic routes to functional materials with partially absorbed nonmetallic elements (i.e., hydrogen and nitrogen) can open up more possibilities for preparing novel families of electronically active oxide compounds. Fast and reversible uptake and release of hydrogen in epitaxial ABO3 manganite films through an adapted low‐frequency inductively coupled plasma technology is introduced. Compared with traditional dopants of metallic cations, the plasma‐assisted hydrogen implantations not only produce reversibly structural transformations from pristine perovskite (PV) phase to a newly found protonation‐driven brownmillerite one but also regulate remarkably different electronic properties driving the material from a ferromagnetic metal to a weakly ferromagnetic insulator for a range of manganite (La1?xSrxMnO3) thin films. Moreover, a reversible perovskite‐brownmillerite‐perovskite transition is achieved at a relatively low temperature (T ≤ 350 °C), enabling multifunctional modulations for integrated electronic systems. The fast, low‐temperature control of structural and electronic properties by the facile hydrogenation/dehydrogenation treatment substantially widens the space for exploring new possibilities of novel properties in proton‐based multifunctional materials.  相似文献   

11.
We have used photoluminescence (PL) and photomodulation (PM) spectroscopy to investigate the reversible spectral changes of PL in CH3NH3PbI3−xBrx films, where x is 1.7. In an as-prepared film, the peak of PL spectra shifts from ∼640 nm near bandedge to ∼750 nm after excitation by a continuous wave (CW) or a pulsed laser with high repetition rate, but keeps at 640 nm excited by same pulsed laser with the repetition rate smaller than 500 Hz. The PM spectroscopy also shows the formation of sub bandgap states after illumination which is responsible for the red shift of PL. The light induced modification of optical properties is reversible after keeping the film out of illumination for several hours at room temperature. We analyze the photoinduced modification to be two-steps processes: the temporary sub bandgap states were first photogenerated in perovskite film, if those states interacting with more coming photons within their lifetimes, light induced metastable states responsible for red-shift of PL will be formed. This instability reduces the electronic bandgap and generates more traps which will degrade the performance of the related photovoltaic devices.  相似文献   

12.
A solid‐state thermal memory that can store and retain thermal information with temperature states as input and output is demonstrated experimentally. A single‐crystal VO2 nanobeam is used, undergoing a metal–insulator transition at ~340 K, to obtain a nonlinear and hysteresis response in temperature. It is shown that the application of a voltage bias can substantially tune the characteristics of the thermal memory, to an extent that the heat conduction can be increased ~60%, and the output HIGH/LOW temperature difference can be amplified over two orders of magnitude compared to an unbiased device. The realization of a solid‐state thermal memory combined with an effective electrical control thus allows the development of practical thermal devices for nano‐ to macroscale thermal management.  相似文献   

13.
Smart heating devices with reliable self‐regulating performances and high efficiency, combined with additional properties like mechanical flexibility, are of particular interest in healthcare, soft robotics, and smart buildings. Unfortunately, the development of smart heaters necessitates managing normally conflicting requirements such as good self‐regulating capabilities and efficient Joule heating performances. Here, a simple and universal materials design strategy based on a series connection of different conductive polymer composites (CPC) is shown to provide unique control over the pyroresistive properties. Hooke's and Kirchhoff's laws of electrical circuits can simply predict the overall pyroresistive behavior of devices connected in series and/or parallel configurations, hence providing design guidelines. An efficient and mechanically flexible Joule heating device is hence designed and created. The heater is characterized by a zero temperature coefficient of resistance below the self‐regulating temperature, immediately followed by a large and sharp positive temperature coefficient (PTC) behavior with a PTC intensity of around 106. Flexibility and toughness is provided by the selected elastomeric thermoplastic polyurethane (TPU) matrix as well as the device design. The universality of the approach is demonstrated by using different polymer matrices and conductive fillers for which repeatable results are consistently obtained.  相似文献   

14.
All‐inorganic halide perovskite materials are regarded as promising materials in information display applications owing to their tunable color, narrow emission peak, and easy processability. However, the photoluminescence (PL) stability of halide perovskite films is still inferior due to their poor thermal stability and hygroscopic properties. Herein, all‐inorganic perovskite films are prepared through vacuum thermal deposition method to enhance thermal and hygroscopic stability. By intentionally adding extra bromide source, a structure of CsPbBr3 nanocrystals embedded in a CsPb2Br5 matrix (CsPbBr3/CsPb2Br5) is formed via an air exposure process, leading to impressive PL stability in ambient atmosphere. In addition, the as‐fabricated CsPbBr3/CsPb2Br5 structure shows enhanced PL intensity due to the dielectric confinement. The CsPbBr3/CsPb2Br5 structure film can almost reserve its initial PL intensity after four months, even stored in ambient atmosphere. The PL intensity for CsPbBr3/CsPb2Br5 films vanishes at elevated temperature and recovers by cooling down in a short time. The reversible PL conversion process can be repeated over hundreds of times. Based on the reversible PL property, prototype thermal‐driven information display devices are demonstrated by employing heating circuits on flexible transparent substrates. These robust perovskite films with reversible PL characteristics promise an alternative solid‐state emitting display.  相似文献   

15.
Charge injection at metal/organic interface is a critical issue for organic electronic devices in general as poor charge injection would cause high contact resistance and severely limit the performance of organic devices. In this work, a new approach is presented to enhance the charge injection by using atomic layer deposition (ALD) to prepare an ultrathin vanadium oxide (VOx) layer as an efficient hole injection interlayer for organic field‐effect transistors (OFETs). Since organic materials are generally delicate, a gentle low‐temperature ALD process is necessary for compatibility. Therefore, a new low‐temperature ALD process is developed for VOx at 50 °C using a highly volatile vanadium precursor of tetrakis(dimethylamino)vanadium and non‐oxidizing water as the oxygen source. The process is able to prepare highly smooth, uniform, and conformal VOx thin films with precise control of film thickness. With this ALD process, it is further demonstrated that the ALD VOx interlayer is able to remarkably reduce the interface contact resistance, and, therefore, significantly enhance the device performance of OFETs. Multiple combinations of the metal/VOx/organic interface (i.e., Cu/VOx/pentacene, Au/VOx/pentacene, and Au/VOx/BOPAnt) are examined, and the results uniformly show the effectiveness of reducing the contact resistance in all cases, which, therefore, highlights the broad promise of this ALD approach for organic devices applications in general.  相似文献   

16.
Distinct properties of multiple phases of vanadium oxide (VOx) render this material family attractive for advanced electronic devices, catalysis, and energy storage. In this work, phase boundaries of VOx are crossed and distinct electronic properties are obtained by electrochemically tuning the oxygen content of VOx thin films under a wide range of temperatures. Reversible phase transitions between two adjacent VOx phases, VO2 and V2O5, are obtained. Cathodic biases trigger the phase transition from V2O5 to VO2, accompanied by disappearance of the wide band gap. The transformed phase is stable upon removal of the bias while reversible upon reversal of the electrochemical bias. The kinetics of the phase transition is monitored by tracking the time‐dependent response of the X‐ray absorption peaks upon the application of a sinusoidal electrical bias. The electrochemically controllable phase transition between VO2 and V2O5 demonstrates the ability to induce major changes in the electronic properties of VOx by spanning multiple structural phases. This concept is transferable to other multiphase oxides for electronic, magnetic, or electrochemical applications.  相似文献   

17.
The thermal stability of flip-chip solder joints made with trilayer Al/Ni(V)/Cu underbump metalization (UBM) and eutectic Pb-Sn solder connected to substrates with either electroless Ni(P)-immersion gold (ENIG) or Pb-Sn solder on Cu pad (Cu-SOP) surface finish was determined. The ENIG devices degraded more than 50 times faster than the Cu-SOP devices. Microstructural characterization of these joints using scanning and transmission electron microscopy and ion beam microscopy showed that electrical degradation of the ENIG devices was a direct result of the conversion of the as-deposited Ni(V) barrier UBM layer into a porous fine-grained V3Sn-intermetallic compound (IMC). This conversion was driven by the Au layer in the ENIG surface finish. No such conversion was observed for the devices assembled on Cu-SOP surface finish substrates. A resistance degradation model is proposed. The model captures changes from a combination of phenomena including increased (1) intrinsic resistivity, (2) porosity, and (3) electron scattering at grain boundaries and surfaces. Finally, the results from this study were compared with results found in a number of published electromigration studies. This comparison indicates that degradation during current stressing in the Pb-Sn bump/ENIG system is in part due to current-crowding-induced Joule heating and the thermal gradients that result from localized Joule heating.  相似文献   

18.
Heating mechanisms of LDMOS and LIGBT in ultrathin SOI   总被引:1,自引:0,他引:1  
Temperature rises due to self-heating in silicon-on-insulator (SOI) power devices may lead to performance degradation and reliability problems. This letter investigates the mechanisms and spatial distribution of heat generation in linearly graded SOI LDMOS and LIGBT devices. While Joule heating dominates in LDMOS devices, hole collection at the p-well-drift region junction contributes strongly to the heating of LIGBT's. Also, the presence of both Joule and recombination heating makes the heating profile more uniform in LIGBT's. These effects combine to yield a temperature rise in LIGBT's that is more uniform and lower on average than that in LDMOS devices  相似文献   

19.
Lead‐free halide double perovskites with diverse electronic structures and optical responses, as well as superior material stability show great promise for a range of optoelectronic applications. However, their large bandgaps limit their applications in the visible light range such as solar cells. In this work, an efficient temperature‐derived bandgap modulation, that is, an exotic fully reversible thermochromism in both single crystals and thin films of Cs2AgBiBr6 double perovskites is demonstrated. Along with the thermochromism, temperature‐dependent changes in the bond lengths of Ag? Br (RAg? Br) and Bi? Br (RBi? Br) are observed. The first‐principle molecular dynamics simulations reveal substantial anharmonic fluctuations of the RAg? Br and RBi? Br at high temperatures. The synergy of anharmonic fluctuations and associated electron–phonon coupling, and the peculiar spin–orbit coupling effect, is responsible for the thermochromism. In addition, the intrinsic bandgap of Cs2AgBiBr6 shows negligible changes after repeated heating/cooling cycles under ambient conditions, indicating excellent thermal and environmental stability. This work demonstrates a stable thermochromic lead‐free double perovskite that has great potential in the applications of smart windows and temperature sensors. Moreover, the findings on the structure modulation‐induced bandgap narrowing of Cs2AgBiBr6 provide new insights for the further development of optoelectronic devices based on the lead‐free halide double perovskites.  相似文献   

20.
The coefficients of thermopower and electrical and thermal conductivity in the PbTe0.8Se0.1 S 0.1 solid solution with electron concentration (4.6–54) × 1018 cm?3 are studied in the range of 85–300 K (and in some cases up to 700 K). The temperature dependences of electrical and thermal conductivity indicate that the low-temperature electron and phonon scattering initiated by the off-center impurity of sulfur exists. The temperature dependences of the electronic and lattice components of thermal conductivity are calculated in the approximation of a parabolic spectrum and electron scattering by acoustic phonons and neutral substitutional impurities. The lattice thermal conductivity is found to have a feature in the form of a shallow minimum in the range of 85–250 K. A similar feature, while not so clearly pronounced, is found to exist also in Pb1?x SnxTe1?x Sex alloys (x≥0.15) with an off-center tin impurity. An analysis of the possible origins of this effect suggests that, at low temperatures, the Lorentz numbers L of the materials under study are smaller than the L0 numbers employed which correspond to the above scattering mechanisms. The cause of the decrease in L is related to electron scattering at two-level systems, a mechanism whose effect grows with increasing electron energy. An analysis of experimental data obtained at high temperatures, as well as on undoped samples with the lowest possible carrier concentrations, yields the values of L for samples with different electron densities. The minimum value L/L0 = 0.75 is obtained for a lightly doped sample at ~130 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号