首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Materials with embedded vascular networks afford rapid and enhanced control over bulk material properties including thermoregulation and distribution of active compounds such as healing agents or stimuli. Vascularized materials have a wide range of potential applications in self‐healing systems and tissue engineering constructs. Here, the application of vascularized materials for accelerated phase transitions in stimuli‐responsive microfluidic networks is reported. Poly(ester amide) elastomers are hygroscopic and exhibit thermo‐mechanical properties (Tg ≈ 37 °C) that enable heating or hydration to be used as stimuli to induce glassy‐rubbery transitions. Hydration‐dependent elasticity serves as the basis for stimuli‐responsive shape‐memory microfluidic networks. Recovery kinetics in shape‐memory microfluidics are measured under several operating modes. Perfusion‐assisted delivery of stimulus to the bulk volume of shape‐memory microfluidics dramatically accelerates shape recovery kinetics compared to devices that are not perfused. The recovery times are 4.2 ± 0.1 h and 8.0 ± 0.3 h in the perfused and non‐perfused cases, respectively. The recovery kinetics of the shape‐memory microfluidic devices operating in various modes of stimuli delivery can be accurately predicted through finite element simulations. This work demonstrates the utility of vascularized materials as a strategy to reduce the characteristic length scale for diffusion, thereby accelerating the actuation of stimuli‐responsive bulk materials.  相似文献   

2.
Three‐dimensional structures that undergo reversible shape changes in response to mild stimuli enable a wide range of smart devices, such as soft robots or implantable medical devices. Herein, a dual thiol‐ene reaction scheme is used to synthesize a class of liquid crystal (LC) elastomers that can be 3D printed into complex shapes and subsequently undergo controlled shape change. Through controlling the phase transition temperature of polymerizable LC inks, morphing 3D structures with tunable actuation temperature (28 ± 2 to 105 ± 1 °C) are fabricated. Finally, multiple LC inks are 3D printed into single structures to allow for the production of untethered, thermo‐responsive structures that sequentially and reversibly undergo multiple shape changes.  相似文献   

3.
Semiconducting single‐walled carbon nanotubes (sc‐SWCNTs) enriched by a conjugated polymer extraction process have been actively studied for various applications in both electronics and optoelectronics. Although the resulting tube samples usually have high sc‐purity and concentration, SWCNT networks from such dispersions typically contain residual conjugated polymer that may degrade device performance and its removal remains a challenge while maintaining uniform, dense SWCNT thin film networks. In this study, a novel polymer–SWCNT combination based on an alternating bisfuran‐s‐tetrazine and benzo[1,2‐b:4,5‐b′]dithiophene copolymer abbreviated as PBDTFTz is proposed. This polymer decomposes at >250 °C or under UV irradiation. In situ transistor characterization under laser irradiation confirms the polymer decomposition. The study of the tube network in the transistor channel at various channel lengths reveals significantly reduced contact resistance attributed to removal of the wrapping PBDTFTz polymer. In ammonia sensing experiments, sc‐SWCNT networks demonstrate rapid and reversible responses, while the unwrapped nanotube networks prove superior in terms of signal to noise ratio and a detection limit of 2.5 ppb is calculated, almost four times better than polymer wrapped nanotubes.  相似文献   

4.
Ordering of semiconducting polymers in thin films from the nano to microscale is strongly correlated with charge transport properties as well as organic field‐effect transistor performance. This paper reports a method to control nano to microscale ordering of poly{[N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene)} (P(NDI2OD‐T2)) thin films by precisely regulating the solidification rate from the metastable state just before crystallization. The proposed simple but effective approach, kinetically controlled crystallization, achieves optimized P(NDI2OD‐T2) films with large polymer domains, long range ordered fibrillar structures, and molecular orientation preferable for electron transport leading to dramatic morphological changes in both polymer domain sizes at the micrometer scale and molecular packing structures at nanoscales. Structural changes significantly increase electron mobilities up to 3.43 ± 0.39 cm2 V?1 s?1 with high reliability, almost two orders of enhancement compared with devices from naturally dried films. Small contact resistance is also obtained for electron injection (0.13 MΩ cm), low activation energy (62.51 meV), and narrow density of states distribution for electron transport in optimized thin films. It is believed that this study offers important insight into the crystallization of conjugated polymers that can be broadly applied to optimize the morphology of semiconducting polymer films for solution processed organic electronic devices.  相似文献   

5.
We describe the characterization, ferroelectric phase stability and polarization switching in strain‐free assemblies of PbZr0.3Ti0.7O3 (PZT) nanostructures. The 3‐dimensionally ordered macroporous structures present uniquely large areas and volumes of PZT where the microstructure is spatially modulated and the composition is homogeneous. Variable temperature powder X‐ray diffraction (XRD) studies show that the global structure is crystalline and tetragonal at room temperature and undergoes a reversible tetragonal to cubic phase transition on heating/cooling. The measured phase‐transition temperature is 50–60 °C lower than bulk PZT of the same composition. The local ferroelectric properties were assessed using piezoresponse force spectroscopy that reveal an enhanced piezoresponse from the nanostructured films and demonstrate that the switching polarization can be spatially mapped across these structures. An enhanced piezoresponse is observed in the nanostructured films which we attribute to the formation of strain free films, thus for the first time we are able to assess the effects of crystallite‐size independently of internal stress. Corresponding polarization distributions have been calculated for the bulk and nanostructured materials using a direct variational method and Landau‐Ginzburg‐Devonshire (LGD) theory. By correlating local and global characterization techniques we have for the first time unambiguously demonstrated the formation of tetragonal and ferroelectric PZT in large volume nanostructured architectures. With the wide range of materials available that can be formed into such controlled architectures we conclude that this study opens a pathway for the effective studies of nanoscale ferroelectrics in uniquely large volumes.  相似文献   

6.
We describe the characterization, ferroelectric phase stability and polarization switching in strain‐free assemblies of PbZr0.3Ti0.7O3 (PZT) nanostructures. The 3‐dimensionally ordered macroporous structures present uniquely large areas and volumes of PZT where the microstructure is spatially modulated and the composition is homogeneous. Variable temperature powder X‐ray diffraction (XRD) studies show that the global structure is crystalline and tetragonal at room temperature and undergoes a reversible tetragonal to cubic phase transition on heating/cooling. The measured phase‐transition temperature is 50–60 °C lower than bulk PZT of the same composition. The local ferroelectric properties were assessed using piezoresponse force spectroscopy that reveal an enhanced piezoresponse from the nanostructured films and demonstrate that the switching polarization can be spatially mapped across these structures. An enhanced piezoresponse is observed in the nanostructured films which we attribute to the formation of strain free films, thus for the first time we are able to assess the effects of crystallite‐size independently of internal stress. Corresponding polarization distributions have been calculated for the bulk and nanostructured materials using a direct variational method and Landau‐Ginzburg‐Devonshire (LGD) theory. By correlating local and global characterization techniques we have for the first time unambiguously demonstrated the formation of tetragonal and ferroelectric PZT in large volume nanostructured architectures. With the wide range of materials available that can be formed into such controlled architectures we conclude that this study opens a pathway for the effective studies of nanoscale ferroelectrics in uniquely large volumes.  相似文献   

7.
Structural energy storage materials refer to a broad category of multifunctional materials which can simultaneously provide load bearing and energy storage to achieve weight reduction in weight‐sensitive applications. Reliable and satisfactory performance in each function, load bearing or energy storage, requires peculiar material design with potential trade‐offs between them. Here, the trade‐offs between functionalities in an emerging class of nanomaterials, carbon nanofibers (CNFs), are unraveled. The CNFs are fabricated by emulsion and coaxial electrospinning and activated by KOH at different activation conditions. The effect of activation on supercapacitor performance is analyzed using two electrode test cells with aqueous electrolyte. Porous CNFs show promising energy storage capacity (191.3 F g?1 and excellent cyclic stability) and load‐bearing capability (σf > 0.55 ± 0.15 GPa and E > 27.4 ± 2.6 GPa). While activation enhances surface area and capacitance, it introduces flaws in the material, such as nanopores, reducing mechanical properties. It is found that moderate activation can lead to dramatic improvement in capacitance (by >300%), at a rather moderate loss in strength (<17%). The gain in specific surface area and capacitance in CNFs is many times those observed in bulk carbon structures, such as carbon fibers, indicating that activation is mainly effective near the free surfaces and for low‐dimensional materials.  相似文献   

8.
The utilization of dynamic covalent and noncovalent bonds in polymeric materials offers the possibility to regenerate mechanical damage, inflicted on the material, and is therefore of great interest in the field of self‐healing materials. For the design of a new class of self‐healing materials, methacrylate containing copolymers with acylhydrazones as reversible covalent crosslinkers are utilized. The self‐healing polymer networks are obtained by a bulk polymerization of an acylhydrazone crosslinker and commercially available methacrylates as comonomers to fine‐tune the Tg of the systems. The influence of the amount of acylhydrazone crosslinker and the self‐healing behavior of the polymers is studied in detail. Furthermore, the basic healing mechanism and the corresponding mechanical properties are analyzed.  相似文献   

9.
The light‐induced reversible switching of the swelling of microgel particles triggered by photo‐isomerization and binding/unbinding of a photosensitive azobenzene‐containing surfactant is reported. The interactions between the microgel (N‐isopropylacrylamide, co‐monomer: allyl acetic acid, crosslinker: N,N′‐methylenebisacrylamide) and the surfactant are studied by UV‐Vis spectroscopy, dynamic and electrophoretic light scattering measurements. Addition of the surfactant above a critical concentration leads to contraction/collapse of the microgel. UV light irradiation results in transcis isomerization of the azobenzene unit incorporated into the surfactant tail and causes an unbinding of the more hydrophilic cis isomer from the microgel and its reversible swelling. The reversible contraction can be realized by blue light irradiation that transfers the surfactant back to the more hydrophobic trans conformation, in which it binds to the microgel. The phase diagram of the surfactant‐microgel interaction and transitions (aggregation, contraction, and precipitation) is constructed and allows prediction of changes in the system when the concentration of one or both components is varied. Remote and reversible switching between different states can be realized by either UV or visible light irradiation.  相似文献   

10.
The synthesis, characterization, and field‐effect transistor (FET) properties of a new class of thieno[3,2‐b]thieno[2′,3′:4,5]thieno[2,3‐d]thiophene derivatives are described. The optical spectra of their films show the presence of stronger interactions between molecules in the solid state. Thermal analyses reveal that the three materials are thermally stable and have no phase transitions at low temperature. The crystal structures are determined, and show π‐stacked structures and intermolecular S···S contacts. These organic materials exhibit p‐type FET behavior with hole mobilities as high as 0.14 cm2 V?1 s?1 and an on/off current ratio of 106. These results indicate that thieno[3,2‐b]thieno [2′,3′:4,5]thieno[2,3‐d]thiophene, as a linear π‐conjugated system, is an effective building block for developing high‐performance organic semiconductors.  相似文献   

11.
Shell‐crosslinked knedel‐like nanoparticles (SCKs; “knedel” is a Polish term for dumplings) were derivatized with gadolinium chelates and studied as robust magnetic‐resonance‐imaging‐active structures with hydrodynamic diameters of 40 ± 3 nm. SCKs possessing an amphiphilic core–shell morphology were produced from the aqueous assembly of diblock copolymers of poly‐(acrylic acid) (PAA) and poly(methyl acrylate) (PMA), PAA52b–PMA128, and subsequent covalent crosslinking by amidation upon reaction with 2,2′‐(ethylenedioxy)bis(ethylamine) throughout the shell layer. The properties of these materials, including non‐toxicity towards mammalian cells, non‐immunogenicity within mice, and capability for polyvalent targeting, make them ideal candidates for utilization within biological systems. The synthesis of SCKs derivatized with GdIII and designed for potential use as a unique nanometer‐scale contrast agent for MRI applications is described herein. Utilization of an amino‐functionalized diethylenetriaminepentaacetic acid–Gd analogue allowed for direct covalent conjugation throughout the hydrophilic shell layer of the SCKs and served to increase the rotational correlation lifetime of the Gd. In addition, the highly hydrated nature of the shell layer in which the Gd was located allowed for rapid water exchange; thus, the resulting material demonstrated large ionic relaxivities (39 s–1 mM–1) in an applied magnetic field of 0.47 T at 40 °C and, as a result of the large loading capacity of the material, also demonstrated high molecular relaxivities (20 000 s–1 mM–1).  相似文献   

12.
The refractive indices of naturally occurring materials are limited, and there exists an index gap between indices of air and available solid materials. With many photonics and electronics applications, there has been considerable effort in creating artificial materials with optical and dielectric properties similar to air while simultaneously being mechanically stable to bear load. Here, a class of ordered nanolattice materials consisting of periodic thin‐shell structures with near‐unity refractive index and high stiffness is demonstrated. Using a combination of 3D nanolithography and atomic layer deposition, these ordered nanostructured materials have reduced optical scattering and improved mechanical stability compared to existing randomly porous materials. Using ZnO and Al2O3 as the building materials, refractive indices from 1.3 down to 1.025 are achieved. The experimental data can be accurately described by Maxwell Garnett effective media theory, which can provide a guide for index design. The demonstrated low‐index, low‐scattering, and high‐stiffness materials can serve as high‐quality optical films in multilayer photonic structures, waveguides, resonators, and ultra‐low‐k dielectrics.  相似文献   

13.
Robust, amphiphilic core–shell nanoparticles that are selectively labeled with gadolinium in the hydrophilic and water‐swollen shell layer are depicted in the cover picture. These well‐defined nanostructured materials exhibit high relaxivity, a large loading capacity, and are based upon a biocompatible platform for ultimate function in magnetic resonance imaging (MRI) applications, as reported by Wooley and co‐workers on p. 1248. Shell‐crosslinked knedel‐like nanoparticles (SCKs; “knedel” is a Polish term for dumplings) were derivatized with gadolinium chelates and studied as robust magnetic‐resonance‐imaging‐active structures with hydrodynamic diameters of 40 ± 3 nm. SCKs possessing an amphiphilic core–shell morphology were produced from the aqueous assembly of diblock copolymers of poly‐(acrylic acid) (PAA) and poly(methyl acrylate) (PMA), PAA52b–PMA128, and subsequent covalent crosslinking by amidation upon reaction with 2,2′‐(ethylenedioxy)bis(ethylamine) throughout the shell layer. The properties of these materials, including non‐toxicity towards mammalian cells, non‐immunogenicity within mice, and capability for polyvalent targeting, make them ideal candidates for utilization within biological systems. The synthesis of SCKs derivatized with GdIII and designed for potential use as a unique nanometer‐scale contrast agent for MRI applications is described herein. Utilization of an amino‐functionalized diethylenetriaminepentaacetic acid–Gd analogue allowed for direct covalent conjugation throughout the hydrophilic shell layer of the SCKs and served to increase the rotational correlation lifetime of the Gd. In addition, the highly hydrated nature of the shell layer in which the Gd was located allowed for rapid water exchange; thus, the resulting material demonstrated large ionic relaxivities (39 s–1 mM–1) in an applied magnetic field of 0.47 T at 40 °C and, as a result of the large loading capacity of the material, also demonstrated high molecular relaxivities (20 000 s–1 mM–1).  相似文献   

14.
Compound semiconductors derived from ZnS (zincblende and wurtzite) with tetrahedral framework structures have functions for various applications. Examples of such materials include Cu–S‐based materials with zincblende‐derivative structures, which have attracted attention as thermoelectric (TE) materials over the past decade. This study illuminates superior TE performance in polycrystalline samples of enargite Cu3P1?xGexS4 with a wurtzite‐derivative structure. The substitution of Ge for P dopes holes into the top of the valence band composed of Cu‐3d and S‐3p, whereby its multiband characteristic leads to a high TE power factor. Furthermore, a reduction in the grain size to 50–300 nm can effectively decrease phonon mean free paths, leading to low thermal conductivity. These features result in a dimensionless TE figure of merit ZT of 0.5 at 673 K for the x = 0.2 sample. Environmentally benign and low‐cost characteristics of the constituent elements of Cu3PS4, as well as its high‐performance thermoelectricity, make it a promising candidate for large‐scale TE applications. Furthermore, this finding extends the development field of Cu–S‐based TE materials to those with wurtzite‐derivative structures.  相似文献   

15.
Conventional design wisdom prevents both bulk and interfacial toughness to be presented in the same hydrogel, because the bulk properties of hydrogels are usually different from the interfacial properties of the same hydrogels on solid surfaces. Here, a fully‐physically‐linked agar (the first network)/poly(N ‐hydroxyethyl acrylamide) (pHEAA, the second network), where both networks are physically crosslinked via hydrogen bonds, is designed and synthesized. Bulk agar/pHEAA hydrogels exhibit high mechanical properties (2.6 MPa tensile stress, 8.0 tensile strain, 8000 J m?2 tearing energy, 1.62 MJ m?3 energy dissipation), high self‐recovery without any external stimuli (62%/30% toughness/stiffness recovery), and self‐healing property. More impressively, without any surface modification, agar/pHEAA hydrogels can be easily and physically anchored onto different nonporous solid substrates of glass, titanium, aluminum, and ceramics to produce superadhesive hydrogel–solid interfaces (i.e., high interfacial toughness of 2000–7000 J m?2). Comparison of as‐prepared and swollen gels in water and hydrogen‐bond‐breaking solvents reveals that strong bulk toughness provides a structural basis for strong interfacial toughness, and both high toughness mainly stem from cooperative hydrogen bonds between and within two networks and between two networks and solid substrates. This work demonstrates a new gel system to achieve superhigh bulk and interfacial toughness on nonporous solid surfaces.  相似文献   

16.
Soft materials with widely tailorable mechanical properties throughout the material's volume can shape the future of soft robotics and wearable electronics, impacting both consumer and defense sectors. Herein, a platform of 3D printable soft polymer networks with unprecedented tunability of stiffness of nearly three orders of magnitude (MPa to GPa) and an inherent capability to interbond is reported. The materials are based on dynamic covalent polymer networks with variable density of crosslinkers attached to prepolymer backbones via a temperature‐reversible Diels–Alder (DA) reaction. Inherent flexibility of the prepolymer chains and controllable crosslinking density enable 3D printed networks with glass transition temperatures ranging from just a few degrees to several tens of degrees Celsius. Materials with an elastomeric network demonstrate a fast and spontaneous self‐healing behavior at room temperature both in air and under water—a behavior difficult to achieve with other crosslinked materials. Reversible dissociation of DA networks at temperatures exceeding ≈120 °C allows for reprintability, while control of the stereochemistry of DA attachments enables reprogrammable shape memory behavior. The introduced platform addresses current major challenges including control of polymer interbonding, enhanced mechanical performance of printed parts, and reprocessability of 3D‐printed crosslinked materials in the absence of solvent.  相似文献   

17.
Oligomers and regioregular copolymers based on fluorenone subunits are synthesized and used in bulk‐heterojunction photovoltaic cells. These are 2,7‐bis(5‐[(E)‐1,2‐bis(3‐octylthien‐2‐yl)ethylene])‐fluoren‐9‐one (TVF), the product of its oxidative polymerization, that is, (poly[(5,5′‐(bis‐(E)‐1,2‐bis(3‐octylthien‐2‐yl)ethylene]‐alt‐(2,7‐fluoren‐9‐one)]) (PTVF), and an alternate copolymer of fluoren‐9‐one and di‐n‐alkylbithiophene, namely poly[(5,5′‐(3,3′‐di‐n‐octyl‐2,2′‐bithiophene))‐alt‐(2,7‐fluoren‐9‐one)] (PDOBTF). The interpenetrating networks of active layers consisting of these new compounds as electron donors and of methanofullerene [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) as an acceptor exhibit an extended absorption band in the visible part of the spectrum with an absorption edge close to 700 nm. The external power conversion efficiencies (EPCEs) and the external quantum efficiency of the various TVF‐, PTVF‐, and PDOBTF‐based photovoltaic cells have been determined. EPCE values of up to 1 % have been achieved, which demonstrate the potential of fluorenone‐based materials in solar cells. It has also been demonstrated that fluorenone subunits are efficient photon absorbers for the conversion. Interestingly, some cell parameters such as, for example, the fill factor, have been improved as compared to photovoltaic cells with a “classical” poly[2‐methoxy‐5‐(3′,7′‐dimethyloctyloxy)‐1,4‐phenylenevinylene]/PCBM active layer, fabricated and studied under the same experimental conditions.  相似文献   

18.
Vitrimers are a new class of polymeric materials with very attractive properties, since they can be reworked to any shape while being at the same time permanently cross‐linked. As an alternative to the use of transesterification chemistry, we explore catalyst‐free transamination of vinylogous urethanes as an exchange reaction for vitrimers. First, a kinetic study on model compounds reveals the occurrence of transamination of vinylogous urethanes in a good temperature window without side reactions. Next, poly(vinylogous urethane) networks with a storage modulus of ≈2.4 GPa and a glass transition temperature above 80 °C are prepared by bulk polymerization of cyclohexane dimethanol bisacetoacetate, m‐xylylene diamine, and tris(2‐aminoethyl)amine. The vitrimer nature of these networks is examined by solubility, stress‐relaxation, and creep experiments. Relaxation times as short as 85 s at 170 °C are observed without making use of any catalyst. In addition, the networks are recyclable up to four times by consecutive grinding/compression molding cycles without significant mechanical or chemical degradation.  相似文献   

19.
An amphiphilic block copolymer, poly(methylacrylate)82block‐poly(N‐(acryloyloxy)succinimide0.29co‐(N‐acryloylmorpholine)0.71)155 (PMA82b‐P(NAS0.29co‐NAM0.71)155), was synthesized by reversible addition‐fragmentation chain transfer (RAFT) polymerization and then was supramolecularly assembled into micelles in aqueous solution, followed by chemical crosslinking throughout the shell region upon the introduction of 2,2′‐(ethylenedioxy)‐bis(ethylamine) as a crosslinker to afford well‐defined shell crosslinked nanoparticles (SCKs). The number‐averaged hydrodynamic diameters of the micelles and SCKs were (17 ± 4) nm and (16 ± 3) nm, respectively, by dynamic light scattering (DLS), and (15 ± 2) nm and (13 ± 2) nm, respectively, by transmission electron microscopy (TEM). In an attempt to narrow the particle size distributions, the dodecyl trithiocarbonate chain end of the block copolymer was replaced by a 2‐cyanoisopropyl moiety. Each nanoparticle system was characterized by DLS, electrophoretic light scattering (ELS), TEM, and small‐angle X‐ray scattering (SAXS). SAXS was of particular importance, as it provided definitive observation and quantification of shell contraction and densification upon shell crosslinking. The direct incorporation of NAS into the block copolymers during their preparation allowed for unique crosslinking chemistry to proceed with added diamino crosslinkers. The primary advantages of this system include the ability to conduct in situ synthesis of SCKs that are crosslinked directly and derivatized easily by adding nucleophilic ligands before, during, or after the crosslinking.  相似文献   

20.
Thermoelectric generators pose a promising approach in renewable energies as they can convert waste heat into electricity. In order to build high efficiency devices, suitable thermoelectric materials, both n‐ and p‐type, are needed. Here, the n‐type high‐mobility polymer poly[N,N′‐bis(2‐octyldodecyl)naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene) (P(NDI2OD‐T2)) is focused upon. Via solution doping with 4‐(1,3‐dimethyl‐2,3‐dihydro‐1H‐benzoimidazol‐2‐yl)‐N,N‐diphenylaniline (N‐DPBI), a maximum power factor of (1.84 ± 0.13) µW K?2 m?1 is achieved in an in‐plane geometry for 5 wt% dopant concentration. Additionally, UV–vis spectroscopy and grazing‐incidence wide‐angle X‐ray scattering are applied to elucidate the mechanisms of the doping process and to explain the discrepancy in thermoelectric performance depending on the charge carriers being either transported in‐plane or cross‐plane. Morphological changes are found such that the crystallites, built‐up by extended polymer chains interacting via lamellar and π–π stacking, re‐arrange from face‐ to edge‐on orientation upon doping. At high doping concentrations, dopant molecules disturb the crystallinity of the polymer, hindering charge transport and leading to a decreased power factor at high dopant concentrations. These observations explain why an intermediate doping concentration of N‐DPBI leads to an optimized thermoelectric performance of P(NDI2OD‐T2) in an in‐plane geometry as compared to the cross‐plane case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号