首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
Polypyrrole nanoparticles conjugating gadolinium chelates were successfully fabricated for dual‐modal magnetic resonance imaging (MRI) and photoacoustic imaging guided photothermal therapy of cancer, from a mixture of pyrrole and pyrrole‐1‐propanoic acid through a facile one‐step aqueous dispersion polymerization, followed by covalent attachment of gadolinium chelate, using polyethylene glycol as a linker. The obtained PEGylated poly­pyrrole nanoparticles conjugating gadolinium chelates (Gd‐PEG‐PPy NPs), sized around around 70 nm, exhibited a high T1 relaxivity coefficient of 10.61 L mm ?1 s?1, more than twice as high as that of the relating free Gd3+ complex (4.2 L mm –1 s?1). After 24 h intravenous injection of Gd‐PEG‐PPy NPs, the tumor sites exhibited obvious enhancement in both T1‐weighted MRI intensity and photoacoustic signal compared with that before injection, indicating the efficient accumulation of Gd‐PEG‐PPy NPs due to the introduction of the PEG layer onto the particle surface. In addition, tumor growth could be effectively inhibited after treatment with Gd‐PEG‐PPy NPs in combination with near‐infrared laser irradiation. The passive targeting and high MRI/photo­acoustic contrast capability of Gd‐PEG‐PPy NPs are quite favorable for precise cancer diagnosing and locating the tumor site to guide the external laser irradiation for photothermal ablation of tumors without damaging the surrounding healthy tissues. Therefore, Gd‐PEG‐PPy NPs may assist in better monitoring the therapeutic process, and contribute to developing more effective “personalized medicine,” showing great potential for cancer diagnosis and therapy.  相似文献   

3.
A practical and effective strategy for synthesizing PEGylated superparamagnetic iron oxide nanoparticles (SPIONs) is established. In this strategy, poly(acrylic acid) (PAA) is combined with SPIONs via multiple coordination between the carboxylic groups of PAA and SPIONs, which introduces abundant carboxylic groups, then, α,ω‐diamino PEG is linked to SPIONs via the amidation of the carboxylic groups. The synthesized PEGylated SPIONs exhibit no cytotoxicity and high resistance to phagocytosis by macrophages in vitro as well as low uptake by the liver and spleen in vivo, which makes the SPIONs highly efficient in tumor imaging by magnetic resonance imaging (MRI) at a relatively low dose of SPIONs. These outstanding properties are largely due to the significant shielding effect of the dense PEG coating as well as the net neutral surface of the PEGylated SPIONs in physiological conditions. In summary, the PEGylated SPIONs prepared by this strategy exhibit great application potential in tumor imaging as MRI contrast agents targeting through enhanced permeability and retention (EPR) effect.  相似文献   

4.
The performance of current multimodal imaging contrast agents is often constrained by the tunability of nanomaterial structural design. Herein, the influence of nanostructure on the overall imaging performance of a composite nanomaterial for multimodal imaging of brain tumors is studied. Newly designed near‐infrared molecules (TC1) are encapsulated into nanocomposites with ultrasmall iron oxide nanoparticles (UIONPs), forming stable nanoagents for multimodal imaging and photothermal therapy (PTT). Through a modified nanoprecipitation method, the synthesis of nanocomposites denoted as HALF is realized, in which UIONPs are restricted to half of the nanosphere. Such a unique nanostructure that physically separates TC1 and UIONPs is found with capabilities of mitigating fluorescence quenching, preserving the good performance of photoacoustic imaging, and enhancing the magnetic resonance imaging signals. Decorated with a peptide ligand cRGD for better brain tumor targeting, HALF‐cRGD is evaluated both in vitro and in vivo as imaging contrast agents and photothermal therapeutic agents. The good imaging performance and PTT effect of HALF‐cRGD in mice models indicate that the rational design and control of nanostructures could optimize multimodal imaging performance using the same components.  相似文献   

5.
Despite the promise of ferrotherapy in cancer treatment, current ferrous therapeutics suffer from compromised antitumor ferroptosis efficacy and low specificity for tumors. Herein, a protease-activatable nanozyme (Fe3O4@Cu1.77Se) is reported for photoacoustic and tumor-enhanced magnetic resonance imaging (MRI)-guided second near-IR photothermal ferroptosis cancer therapy. Fe3O4@Cu1.77Se remains stable in physiological conditions, but disintegrates to increase reactive intratumoral ferrous supply for elevated hydroxyl radical generation by Fenton reaction and GSH depletion in response to overexpressed matrix metalloproteinases in tumor microenvironment, leading to amplified ferroptosis of tumor cells as well as enhanced T2-weighted MRI contrast. Further integration with second near-IR photoirradiation to generate localized heat not only triggers effective photothermal therapy and photoacoustic imaging but more importantly, potentiates Fenton reaction to promote ferroptotic tumor cell death. Such synergism leads to the polarization of tumor-associated macrophage from the tumor-promoting M2 type to the tumor-killing M1 type, and induces the immunogenic cells death of tumor cells, which in turn promotes the maturation of dendritic cells and infiltration of cytotoxic T lymphocytes in tumor, contributing to significant tumor suppression. This study presents a novel activatable ferrous nanotheranostics for spatial-temporal control over antitumor ferroptosis responses.  相似文献   

6.
Recent breakthroughs in the rational development of multifunctional nanocarriers have highlightened the advantage of combining the complementary forces of several imaging modalities into one single nanotool fully dedicated to the biomedical field and diagnosis applications. A novel multimodal optical‐magnetic resonance imaging nanoprobe is introduced. Designed on the basis of a spinel zinc gallate structure doped with trivalent chromium and gadolinium, this nanocrystal bears the ability to serve as both a highly sensitive persistent luminescence nanoprobe for optical imaging, and a negative contrast agent for highly resolved magnetic resonance imaging (MRI). Additional proof is given that surface coverage can be modified in order to obtain stealth nanoparticles highly suitable for real‐time in vivo application in mice, showing delayed reticulo‐endothelial uptake and longer circulation time after systemic injection.  相似文献   

7.
The poly(maleic anhydride‐alt‐1‐octadecene‐poly(ethylene glycol)) (C18PMH‐PEG) modified single‐walled carbon nanohorns (SWNHs) are designed with high stability and biocompatibility. The as‐prepared SWNHs/C18PMH‐PEG not only can serve as an excellent photothermal agent but also can be used as a promising photoacoustic imaging (PAI) agent both in vitro and in vivo due to its strong absorption in the near infrared (NIR) region. The PAI result reveals that the SWNHs/C18PMH‐PEG possesses ultra long blood circulation time and can significantly be accumulated at the tumor site through the enhanced penetration and retention (EPR) effect. The maximum accumulation of SWNHs/C18PMH‐PEG at tumor site could be achieved at the time point of 24 h after intravenous injection, which is considered to be the optimal time for the 808 nm laser treatment. The subsequent photothermal ablation of tumors can be achieved without triggering any side effects. Therefore, a PAI guided PTT platform based on SWNHs is proposed and highlights the potential theranostic application for biomedical uses.  相似文献   

8.
The critical issue that hinders the translation of nanomaterials from basic research to clinical trials is their potential toxicity caused by long-term body retention. It is still a huge challenge to integrate renal-clearable and theranostic properties into one nanomedicine, especially exploring the nanomaterials with optical absorption in the second near-infrared light (NIR II) biowindow with deep penetration and less tissue scattering. Here, ultrasmall polypyrrole (PPy, ≈2 nm)-based theranostic agents via a facile and green one-step method, which exhibit fluorescence (FL)/photoacoustic (PA)/NIR II multimodal imaging, superior photostability, as well as high photothermal conversion efficiency of 33.35% at 808 nm and 41.97% at 1064 nm is developed. Importantly, these ultrasmall PPy-PEG nanoparticles (NPs) reveal abundant tumor accumulation and efficient renal clearance. Both in vitro and in vivo studies indicate that ultrasmall PPy-PEG NPs have excellent photothermal effect under NIR II laser irradiation that can effectively eliminate the tumors with extremely low systemic toxicity.  相似文献   

9.
Imaging‐guided photothermal therapy based on functional nanomaterials has recently received significant attention and the selection of functional materials with optimal imaging and therapy effect is extremely important. In this work, NaDyF4‐based nanoparticles with varying size are synthesized by doping with different amounts of lutetium ions. To obtain an optimized material, the influence factor of magnetic resonance, X‐ray attenuation, and photothermal properties are discussed in detail. Then, NaDyF4:50%Lu@Prussian blue (PB) nanocomposite is selected as the optimal functional material for T1‐ and T2‐weighted magnetic resonance imaging, X‐ray computed tomography, and photothermal imaging‐guided photothermal therapy of tumor on a small animal model, and the treatment is applied with good results. Studies also suggest that the NaDyF4:50%Lu@PB nanocomposites are biocompatibile. The selection of an optimal material from a multi‐perspective study has provided an incentive for the development of an assortment of novel multifunctional materials for early cancer multifunctional diagnosis and imaging‐guided photothermal therapy.  相似文献   

10.
High‐security nanoplatform with enhanced therapy compliance is extremely promising for tumor. Herein, using a simple and high‐efficient self‐assembly method, a novel active‐targeting nanocluster probe, namely, Ag2S/chlorin e6 (Ce6)/DOX@DSPE‐mPEG2000‐folate (ACD‐FA) is synthesized. Experiments indicate that ACD‐FA is capable of specifically labeling tumor and guiding targeting ablation of the tumor via precise positioning from fluorescence and photoacoustic imaging. Importantly, the probe is endowed with a photodynamic “on‐off” effect, that is, Ag2S could effectively quench the fluorescence of chlorin e6 (89.5%) and inhibit release of 1O2 (92.7%), which is conducive to avoid unwanted phototoxicity during transhipment in the body, and only after nanocluster endocytosed by tumor cells could release Ce6 to produce 1O2. Moreover, ACD‐FA also achieves excellent acid‐responsive drug release, and exhibits eminent chemo‐photothermal and photodynamic effects upon laser irradiation. Compared with single or two treatment combining modalities, ACD‐FA could provide the best cancer therapeutic effect with a relatively low dose, because it made the most of combined effect from chemo‐photothermal and controlled photodynamic therapy, and significantly improves the drug compliance. Besides, the active‐targeting nanocluster notably reduces nonspecific toxicity of both doxorubicin and chlorin e6. Together, this study demonstrates the potency of a newly designed nanocluster for nonradioactive concomitant therapy with precise tumor‐targeting capability.  相似文献   

11.
Multimodal imaging, which combines complementary information of two or more imaging modalities, offers huge advantages. In this paper, the synthesis, characterization, and application of superparamagnetic nitrogen‐doped carbon‐iron oxide hybrid quantum dots (C‐Fe3O4 QDs) is reported for triple‐modal bioimaging through fluorescence/magnetic resonance/computed tomography (FL/MR/CT). Especially, C‐Fe3O4 QDs are synthesized by using poly (γ‐glutamic acid) as a precursor and stabilizer via a green and facile one‐pot hydrothermal approach. The as‐prepared C‐Fe3O4 QDs exhibit excellent water dispersibility, wavelength‐tunable FL property with high quantum yield of about 21.6%, good photostability, strong superparamagnetic property as well as favorable biocompatibility. Meanwhile, these C‐Fe3O4 QDs also show a transverse relaxivity value (r 2) of 154.10 mm ?1 s?1 for T2‐weighted MR imaging mode and an observable X‐ray attenuation effect for CT imaging mode. Moreover, the in vivo bioimaging of tumor‐bearing nude mice by combining FL, MR, and CT images further demonstrates that the as‐prepared C‐Fe3O4 QDs can be readily and efficiently used in FL/MR/CT triple‐modal tumor imaging. Hence, the new and facile one‐pot synthesis strategy for preparing multifunctional C‐Fe3O4 QDs nanoprobes provides a convenient way for achieving an effective and versatile agent for tumorous bioimaging/or diagnostics.  相似文献   

12.
To elaborately fabricate real‐time monitoring and therapeutic function into a biocompatible nanoplatform is a promising route in the cancer therapy field. However, the package of diagnosis and treatment into a single‐“element” nanoparticle remains challenge. Herein, ultrasmall poly(vinylpyrrolidone)‐protected bismuth nanodots (PVP‐Bi nanodots) are successfully synthesized through an ultrafacile strategy (1 min only under ambient conditions). The nanodots are easy to synthesize in both laboratory and large scale using low‐cost bismuth ingredients. PVP‐Bi nanodots with ultrasmall size show good biocompatibility. Due to the high X‐ray attenuation ability of Bi element, PVP‐Bi nanodots have prominent performance on X‐ray computed tomography (CT) imaging. Moreover, PVP‐Bi nanodots exhibit a high photothermal conversion efficiency (η = 30%) because of the strong near‐infrared absorbance, which can serve as nanotheranostic agent for photothermal imaging and cancer therapy. The subsequent PVP‐Bi‐nanodot‐mediated photothermal therapy (PTT) result shows highly efficient ablation of cancer cells both in vitro and in vivo. PVP‐Bi nanodots can be almost completely excreted from mice after 7 d. Blood biochemistry and histology analysis suggests that PVP‐Bi nanodots have negligible toxicity. All the positive results reveal that PVP‐Bi nanodots produced through the ultrafacile method are promising single‐“element” nanotheranostic platform for dual‐modal CT/photothermal‐imaging‐guided PTT.  相似文献   

13.
The ability to produce nanotherapeutics at large‐scale with high drug loading efficiency, high drug loading capacity, high stability, and high potency is critical for clinical translation. However, many nanoparticle‐based therapeutics under investigation suffer from complicated synthesis, poor reproducibility, low stability, and high cost. In this work, a simple method for preparing multifunctional nanoparticles is utilized that act as both a contrast agent for magnetic resonance imaging and a photosensitizer for photodynamic therapy for the treatment of cancer. In particular, the photosensitizer protoporphyrin IX (PpIX) is used to solubilize small nanoclusters of superparamagnetic iron oxide nanoparticles (SPIONs) without the use of any additional carrier materials. These nanoclusters are characterized with a high PpIX loading efficiency; a high loading capacity, stable behavior; high potency; and a synthetic approach that is amenable to large‐scale production. In vivo studies of photodynamic therapy (PDT) efficacy show that the PpIX‐coated SPION nanoclusters lead to a significant reduction in the growth rate of tumors in a syngeneic murine tumor model compared to both free PpIX and PpIX‐loaded poly(ethylene glycol)‐polycaprolactone micelles, even when injected at 1/8th the dose. These results suggest that the nanoclusters developed in this work can be a promising nanotherapeutic for clinical translation.  相似文献   

14.
The development of nanotheranostic agents that integrate diagnosis and therapy for effective personalized precision medicine has obtained tremendous attention in the past few decades. In this report, biocompatible electron donor–acceptor conjugated semiconducting polymer nanoparticles (PPor‐PEG NPs) with light‐harvesting unit is prepared and developed for highly effective photoacoustic imaging guided photothermal therapy. To the best of our knowledge, it is the first time that the concept of light‐harvesting unit is exploited for enhancing the photoacoustic signal and photothermal energy conversion in polymer‐based theranostic agent. Combined with additional merits including donor–acceptor pair to favor electron transfer and fluorescence quenching effect after NP formation, the photothermal conversion efficiency of the PPor‐PEG NPs is determined to be 62.3%, which is the highest value among reported polymer NPs. Moreover, the as‐prepared PPor‐PEG NP not only exhibits a remarkable cell‐killing ability but also achieves 100% tumor elimination, demonstrating its excellent photothermal therapeutic efficacy. Finally, the as‐prepared water‐dispersible PPor‐PEG NPs show good biocompatibility and biosafety, making them a promising candidate for future clinical applications in cancer theranostics.  相似文献   

15.
Cell membrane–based nanosystems with desirable characteristics have been studied extensively for many therapeutic applications. However, current research has focused on single cell membrane, and multifunctional fused membrane materials from different membrane types are still rare. Herein, a platelet–cancer stem cell (CSC) hybrid membrane‐coated iron oxide magnetic nanoparticle (MN) {[CSC‐P]MN} is presented for the first time for the enhanced photothermal therapy of head and neck squamous cell carcinoma (HNSCC). Inherited from the original source cells, the platelet membrane shows immune evading ability due to the surface marker comprising a number of “don't eat me” signals, and the CSC membrane has homotypic targeting capabilities due to the specific surface adhesion molecules. The [CSC‐P]MNs possess superior characteristics for immune evasion, active cancer targeting, magnetic resonance imaging, and photothermal therapy. Compared with single cell membrane–coated MNs, [CSC‐P]MNs exhibit prolonged circulation times and enhanced targeting abilities. Moreover, the [CSC‐P]MNs exhibit a superior photothermal ability that provides excellent HNSCC tumor growth inhibition, particularly in an immunocompetent Tgfbr1/Pten conditional double knockout HNSCC mouse model that contains a more complex tumor microenvironment that is similar to the human HNSCC microenvironment. Collectively, this biomimetic multimembrane‐coated nanoplatform may provide enhanced antitumor efficacy in the complex tumor microenvironment.  相似文献   

16.
Owing to the unique advantages of photoacoustic imaging (PAI) and photothermal therapy (PTT) conducted over the near-infrared-II (NIR-II) window, the development of high-efficiency optical agents with NIR-II light responsiveness is of great significance. Despite the diversity of optical agents developed for NIR-II PAI and PTT, most of them are based on inorganic nanomaterials and small molecular dyes, whose biosafety and photostability need to be further assessed, respectively. Organic semiconducting macromolecular dyes (OSMDs) featuring a large semiconducting backbone are becoming alternative candidates for NIR-II PAI and PTT owing to their reliable biocompatibility, durable photostability, and ideal photothermal conversion capability. This paper reviews the current progress of OSMD-based PAI and PTT in the NIR-II optical window. The three main types of OSMDs with different skeleton architectures are introduced, and their applications for NIR-II PAI (tumor imaging, stem cell tracking, and vasculature imaging) and PTT (tumor ablation) are described. Viable strategies for further improving the NIR-II PAI performance of OSMDs are discussed. Finally, some major issues faced by OSMDs in NIR-II PAI and PTT are raised, and the future development directions of OSMDs are analyzed.  相似文献   

17.
Stimuli‐responsive anticancer agents are of particular interest in the field of cancer therapy. Nevertheless, so far stimuli‐responsive photothermal agents have been explored with limited success for cancer photothermal therapy (PTT). In this work, as a proof‐of‐concept, a pH‐responsive photothermal nanoconjugate for enhanced PTT efficacy, in which graphene oxide (GO) with broad NIR absorbance and effective photothermal conversion efficiency is selected as a typical model receptor of fluorescence resonance energy transfer (FRET), and grafted cyanine dye (e.g., Cypate) acts as the donor of near‐infrared fluorescence (NIRF), is reported for the first time. The conjugate of Cypate‐grafted GO exhibits different conformations in aqueous solutions at various pH, which can trigger pH‐dependent FRET effect between GO and Cypate and thus induce pH‐responsive photothermal effect of GO‐Cypate. GO‐Cypate exhibits severe cell damage owing to the enhanced photothermal effect in lysosomes, and thus generate synergistic PTT efficacy with tumor ablation upon photoirradiation after a single‐dose intravenous injection. The photothermal nanoconjugate with broad NIR absorbance as the effective receptor of FRET can smartly convert emitted NIRF energy from donor cyanine dye into additional photothermal effect for improving PTT. These results suggest that the smart nanoconjugate can act as a promising stimuli‐responsive photothermal nanoplatform for cancer therapy.  相似文献   

18.
The integration of diagnostic and therapeutic functionalities on a single theranostic nano‐system holds great promise to enhance the accuracy of diagnosis and improve the efficacy of therapy. Herein, a multifunctional polymeric nano‐micelle system that contains a photosensitizer chlorin e6 (Ce6) is successfully fabricated, at the same time serving as a chelating agent for Gd3+, together with a near‐infrared (NIR) dye, IR825. With a r1 relativity 7 times higher than that of the commercial agent Magnevist, strong fluorescence offered by Ce6, and high NIR absorbance attributed to IR825, these theranostic micelles can be utilized as a contrast agent for triple modal magnetic resonance (MR), fluorescence, and photoacoustic imaging of tumors in a mouse model. The combined photothermal and photodynamic therapy is then carried out, achieving a synergistic anti‐tumor effect both in vitro and in vivo. Different from single photo treatment modalities which only affect the superficial region of the tumor under mild doses, the combination therapy at the same dose using this agent is able to induce significant damage to both superficial and deep parts of the tumor. Therefore, this work presents a polymer based theranostic platform with great potential in multimodal imaging and combination therapy of cancer.  相似文献   

19.
Combining different therapeutic strategies to treat cancer by overcoming limitations of conventional cancer therapies has shown great promise in both fundamental and clinical studies. Herein, by adding 131I when making iodine‐doped CuS nanoparticles, CuS/[131I]I nanoparticles are obtained, which after functionalization with polyethylene glycol (PEG) are used for radiotherapy (RT) and photothermal therapy (PTT), by utilizing their intrinsic high near‐infrared absorbance and the doped 131I‐radioactivity, respectively. The combined RT and PTT based on CuS/[131I]I‐PEG is then conducted, achieving remarkable synergistic therapeutic effects as demonstrated in the treatment of subcutaneous tumors. In the meanwhile, as revealed by bimodal nuclear imaging and computed tomography (CT) imaging, it is found that CuS/[131I]I‐PEG nanoparticles after being injected into primary solid tumors could migrate to and retain in their nearby sentinel lymph nodes. Importantly, the combined RT and PTT applied on those lymph nodes to assist surgical resection of primary tumors results in remarkably inhibited cancer metastasis and greatly prolonged animal survival. In vivo toxicology studies further reveal that our CuS/I‐PEG is not obviously toxic to animals at fourfold of the treatment dose. This work thus demonstrates the potential of combining RT and PTT using a single nanoagent for imaging‐guided treatment of metastatic tumors.  相似文献   

20.
The ideal theranostic nanoplatform for tumors is a single nanoparticle that has a single semiconductor or metal component and contains all multimodel imaging and therapy abilities. The design and preparation of such a nanoparticle remains a serious challenge. Here, with FeS2 as a model of a semiconductor, the tuning of vacancy concentrations for obtaining “all‐in‐one” type FeS2 nanoparticles is reported. FeS2 nanoparticles with size of ≈30 nm have decreased photoabsorption intensity from the visible to near‐infrared (NIR) region, due to a low S vacancy concentration. By tuning their shape/size and then enhancing the S vacancy concentration, the photoabsorption intensity of FeS2 nanoparticles with size of ≈350 nm (FeS2‐350) goes up with the increase of the wavelength from 550 to 950 nm, conferring the high NIR photothermal effect for thermal imaging. Furthermore, this nanoparticle has excellent magnetic properties for T2‐weighted magnetic resonance imaging (MRI). Subsequently, FeS2‐350 phosphate buffer saline (PBS) dispersion is injected into the tumor‐bearing mice. Under the irradiation of 915‐nm laser, the tumor can be ablated and the metastasis lesions in liver suffer significant inhibition. Therefore, FeS2‐350 has great potential to be used as novel “all‐in‐one” multifunctional theranostic nanoagents for MRI and NIR dual‐modal imaging guided NIR‐photothermal ablation therapy (PAT) of tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号