首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 15 毫秒
1.
Recently, bipolar host materials are the most promising candidates for achieving high performance phosphorescent organic light‐emitting diodes (PHOLEDs) in order to maximize recombination efficiency. However, the development of host material with high triplet energy (E T) is still a great challenge to date to overcome the limitations associated with the present PHOLEDs. Herein, a highly efficient donor‐π‐acceptor (D‐π‐A) type bipolar host (4′‐(9H‐carbazol‐9‐yl)‐2,2′‐dimethyl‐[1,1′‐biphenyl]‐4‐yl)diphenylphosphine oxide (m‐CBPPO) comprising of carbazole, 2,2′‐dimethylbiphenyl and diphenylphosphoryl as D‐π‐A unit, respectively, is developed. Interestingly, a high E T of 3.02 eV is observed for m‐CBPPO due to highly twisted conformation. Furthermore, the new host material is incorporated in PHOLEDs as emissive layer with a new carbene type Ir(cb)3 material as a deep‐blue emitter. The optimized devices show an excellent external quantum efficiency (EQE) of 24.8% with a notable Commission internationale de l'éclairage (x, y) ≤ 0.15, (0.136, 0.138) and high electroluminescence performance with extremely low efficiency roll‐off. Overall, the above EQE is the highest reported for deep‐blue PHOLEDs with very low efficiency roll‐off and also indicate the importance of appropriate host for the development of high performance deep‐blue PHOLEDs.  相似文献   

2.
Two new bipolar host molecules composed of hole‐transporting carbazole and electron‐transporting cyano ( CzFCN ) or oxadiazole ( CzFOxa )‐substituted fluorenes are synthesized and characterized. The non‐conjugated connections, via an sp3‐hybridized carbon, effectively block the electronic interactions between electron‐donating and ‐accepting moieties, giving CzFCN and CzFOxa bipolar charge transport features with balanced mobilities (10?5 to 10?6 cm2 V?1 s?1). The meta–meta configuration of the fluorene‐based acceptors allows the bipolar hosts to retain relatively high triplet energies [ET = 2.70 eV ( CzFOxa ) and 2. 86 eV ( CzFCN )], which are sufficiently high for hosting blue phosphor. Using a common device structure – ITO/PEDOT:PSS/DTAF/TCTA/host:10% dopants (from blue to red)/DPPS/LiF/Al – highly efficient electrophosphorescent devices are successfully achieved. CzFCN ‐based devices demonstrate better performance characteristics, with maximum ηext of 15.1%, 17.9%, 17.4%, 18%, and 20% for blue (FIrpic), green [(PPy)2Ir(acac)], yellowish‐green [m‐(Tpm)2Ir(acac)], yellow [(Bt)2Ir(acac)], and red [Os(bpftz)2(PPhMe2)2, OS1], respectively. In addition, combining yellowish‐green m‐(Tpm)2Ir(acac) with a blue emitter (FIrpic) and a red emitter (OS1) within a single emitting layer hosted by bipolar CzFCN , three‐color electrophosphorescent WOLEDs with high efficiencies (17.3%, 33.4 cd A?1, 30 lm W ?1), high color stability, and high color‐rendering index (CRI) of 89.7 can also be realized.  相似文献   

3.
Previous studies have identified triplet‐triplet annihilation and triplet‐polaron quenching as the exciton density‐dependent mechanisms which give rise to the efficiency roll‐off observed in phosphorescent organic light‐emitting devices (OLEDs). In this work, these quenching processes are independently probed, and the impact of the exciton recombination zone width on the severity of quenching in various OLED architectures is examined directly. It is found that in devices employing a graded‐emissive layer (G‐EML) architecture the efficiency roll‐off is due to both triplet‐triplet annihilation and triplet‐polaron quenching, while in devices which employ a conventional double‐emissive layer (D‐EML) architecture, the roll‐off is dominated by triplet‐triplet annihilation. Overall, the efficiency roll‐off in G‐EML devices is found to be much less severe than in the D‐EML device. This result is well accounted for by the larger exciton recombination zone measured in G‐EML devices, which serves to reduce exciton density‐driven loss pathways at high excitation levels. Indeed, a predictive model of the device efficiency based on the quantitatively measured quenching parameters shows the role a large exciton recombination zone plays in mitigating the roll‐off.  相似文献   

4.
A series of tetraarylsilane compounds, namely p‐BISiTPA ( 1 ), m‐BISiTPA ( 2 ), p‐OXDSiTPA ( 3 ), m‐OXDSiTPA ( 4 ), are designed and synthesized by incorporating electron‐donating arylamine and electron‐accepting benzimidazole or oxadiazole into one molecule via a silicon‐bridge linkage mode. Their thermal, photophysical and electrochemical properties can be finely tuned through the different groups and linking topologies. The para‐disposition compounds 1 and 3 display higher glass transition temperatures, slightly lower HOMO levels and triplet energies than their meta‐disposition isomers 2 and 4 , respectively. The silicon‐interrupted conjugation of the electron‐donating and electron‐accepting segments gives these materials the following advantages: i) relative high triplet energies in the range of 2.69–2.73 eV; ii) HOMO/LUMO levels of the compounds mainly depend on the electron‐donating and electron‐accepting groups, respectively; iii) bipolar transporting feature as indicated by hole‐only and electron‐only devices. These advantages make these materials ideal universal hosts for multicolor phosphorescent OLEDs. 1 and 3 have been demonstrated as universal hosts for blue, green, orange and white electrophosphorescence, exhibiting high efficiencies and low efficiency roll‐off. For example, the devices hosted by 1 achieve maximum external quantum efficiencies of 16.1% for blue, 22.7% for green, 20.5% for orange, and 19.1% for white electrophosphorescence. Furthermore, the external quantum efficiencies are still as high as 14.2% for blue, 22.4% for green, 18.9% for orange, and 17.4% for white electrophosphorescence at a high luminance of 1000 cd m?2. The two‐color, all‐phosphor white device hosted by 3 acquires a maximum current efficiency of 51.4 cd A?1, and a maximum power efficiency of 51.9 lm W?1. These values are among the highest for single emitting layer white PhOLEDs reported till now.  相似文献   

5.
The efficiency roll‐off in blue phosphorescent organic light emitting diodes (OLEDs) using different carbazole compounds as the host is systematically studied. While there is no significant difference in device efficiency, OLEDs using ter‐carbazole as the host show a reduction in efficiency roll‐off at high luminance. Data from transient photoluminescence and electroluminescence measurements show that the lower triplet–triplet annihilation (TTA) and triplet–polaron quenching (TPQ) rates in devices with the ter‐carbazole host compared with other carbazole hosts are the reasons for this reduced efficiency roll‐off. It is also found that the host materials with low glass transition temperatures are more susceptible to the efficiency roll‐off problem.  相似文献   

6.
Efficiency roll‐off in blue organic light‐emitting diodes especially at high brightness still remains a vital issue for which the excitons density‐dependent mechanism of host materials takes most responsibility. Additionally, the efficiency roll‐off leads to high power consumption and reduces the operating lifetime because higher driving voltage and current are required. Here, by subtly modifying the triphenylamine to oxygen‐bridged quasi‐planar structure, a novel thermally activated delayed fluorescence type blue host Tri‐o‐2PO is successfully developed. Efficiency roll‐off based on Tri‐o‐2PO is ultralow with external quantum efficiency (EQE) just dropping by around 2% in the high luminance range from 1000 cd m?2 to 10 000 cd m?2. As expected, low turn‐on voltage (≈2.9 V) of device is also achieved, which is close to the theory limit value (≈2.62 V). Super‐high power efficiency (≈60 lm W?1) and EQE (>22%) are also achieved when utilizing Tri‐o‐2PO as host. Furthermore, two‐color warm‐white light with CIE of (0.45, 0.43) and correlated color temperature of 2921 K is also fabricated and a champion EQE of 21% is delivered. These excellent performances prove the strategy of bridging the triphenylamine to reduce ΔEst is validated and suggest the great potential of this novel skeleton.  相似文献   

7.
A series of pyridine‐containing electron‐transport materials are developed as an electron‐transport layer for the FIrpic‐based blue phosphorescent organic light‐emitting diodes. Their energy levels can be tuned by the introduction of pyridine rings in the framework and on the periphery of the molecules. Significantly reduced operating voltage is achieved without compromising external quantum efficiency by solely tuning the nitrogen atom orientations of those pyidine rings. Unprecedented low operating voltages of 2.61 and 3.03 V are realized at 1 and 100 cd m?2, giving ever highest power efficiency values of 65.8 and 59.7 lm W?1, respectively. In addition, the operating voltages at 100 cd m?2 can be further reduced to 2.70 V by using a host material with a small singlet‐triplet exchange energy, and the threshold voltage for electroluminescence can even be 0.2–0.3 V lower than the theoretical minimum value of the photon energy divided by electron charge. Aside from the reduced operating voltage, a further reduced roll‐off in efficiency is also achieved by the combination of an appropriate host material.  相似文献   

8.
An exciplex forming co‐host is introduced in order to fabricate orange organic light‐emitting diodes (OLEDs) with high efficiency, low driving voltage and an extremely low efficiency roll‐off, by the co‐doping of green and red emitting phosphorescence dyes in the host. The orange OLEDs achieves a low turn‐on voltage of 2.4 V, which is equivalent to the triplet energy gap of the phosphorescent‐green emitting dopant, and a very high external quantum efficiency (EQE) of 25.0%. Moreover, the OLEDs show low efficiency roll‐off with an EQE of over 21% at 10 000 cdm?2. The device displays a very good orange color (CIE of (0.501, 0.478) at 1000 cdm?2) with very little color shift with increasing luminance. The transient electroluminescence of the OLEDs indicate that both energy transfer and direct charge trapping takes place in the devices.  相似文献   

9.
Two phosphorescent iridium complexes with bipolar transporting ability, namely FPPCA (500 nm) and BZQPG (600 nm), are synthesized and employed as an ideal host‐guest system for phosphorescent organic light emitting diodes (PHOLEDs).The devices give very high‐efficiency orange‐red emission from BZQPG with maximum external quantum efficiency (EQE or ηext) of >27% and maximum power efficiency (PE or ηp) of >75 lm/W, and maintain high levels of 26% and 55 lm/W, 25% and 40 lm/W at high luminance of 1000 and 5000 cd m?2, respectively, within a range of 8–15 wt% of BZQPG. The realization of such high and stable EL performance results from the coexistence of two parallel paths: i) effective energy transfer from host (FPPCA) to guest (BZQPG) and ii) direct exciton formation on the BZQPG emitter, which can alternately dominate the electrophosphorescent emission. This all‐phosphor doping system removes the charge‐injection barrier from the charge‐transport process to the emissive layer (EML) due to the inherent narrow Eg of both phosphors. Therefore, this ideal host–guest system represents a new design to produce PHOLEDs with high efficiency and low efficiency roll‐off using a simple device configuration.  相似文献   

10.
11.
Organic light‐emitting diodes (OLEDs) can promise flexible, light weight, energy conservation, and many other advantages for next‐generation display and lighting applications. However, achieving efficient blue electroluminescence still remains a challenge. Though both phosphorescent and thermally activated delayed fluorescence materials can realize high‐efficiency via effective triplet utilization, they need to be doped into appropriate host materials and often suffer from certain degree of efficiency roll‐off. Therefore, developing efficient blue‐emitting materials suitable for nondoped device with little efficiency roll‐off is of great significance in terms of practical applications. Herein, a phenanthroimidazole?anthracene blue‐emitting material is reported that can attain high efficiency at high luminescence in nondoped OLEDs. The maximum external quantum efficiency (EQE) of nondoped device is 9.44% which is acquired at the luminescence of 1000 cd m?2. The EQE is still as high as 8.09% even the luminescence reaches 10 000 cd m?2. The maximum luminescence is ≈57 000 cd m?2. The electroluminescence (EL) spectrum shows an emission peak of 470 nm and the Commission International de L'Eclairage (CIE) coordinates is (0.14, 0.19) at the voltage of 7 V. To the best of the knowledge, this is among the best results of nondoped blue EL devices.  相似文献   

12.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号