首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
All polymer nonvolatile bistable memory devices are fabricated from blends of ferroelectric poly(vinylidenefluoride–trifluoroethylene (P(VDF‐TrFE)) and n‐type semiconducting [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM). The nanoscale phase separated films consist of PCBM domains that extend from bottom to top electrode, surrounded by a ferroelectric P(VDF‐TrFE) matrix. Highly conducting poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) polymer electrodes are used to engineer band offsets at the interfaces. The devices display resistive switching behavior due to modulation of this injection barrier. With careful optimization of the solvent and processing conditions, it is possible to spin cast very smooth blend films (Rrms ≈ 7.94 nm) and with good reproducibility. The devices exhibit high Ion/Ioff ratios (≈3 × 103), low read voltages (≈5 V), excellent dielectric response at high frequencies (?r ≈ 8.3 at 1 MHz), and excellent retention characteristics up to 10 000 s.  相似文献   

3.
Polymer ferroelectric‐gate field effect transistors (Fe‐FETs) employing ferroelectric polymer thin films as gate insulators are highly attractive as a next‐generation non‐volatile memory. Furthermore, polymer Fe‐FETs have been recently of interest owing to their capability of storing data in more than 2 states in a single device, that is, they have multi‐level cell (MLC) operation potential for high density data storage. However, among a variety of technological issues of MLC polymer Fe‐FETs, the requirement of high voltage for cell operation is one of the most urgent problems. Here, a low voltage operating MLC polymer Fe‐FET memory with a high dielectric constant (k) ferroelectric polymer insulator is presented. Effective enhancement of capacitance of the ferroelectric gate insulator layer is achieved by a simple binary solution‐blend of a ferroelectric poly(vinylidene fluoride‐co‐trifluoroethylene) (PVDF‐TrFE) (k ≈ 8) with a relaxer high‐k poly(vinylidene‐fluoride–trifluoroethylene–chlorotrifluoroethylene) (PVDF‐TrFE‐CTFE) (k ≈ 18). At optimized conditions, a ferroelectric insulator with a PVDF‐TrFE/PVDF‐TrFE‐CTFE (10/5) blend composition enables the discrete six‐level multi‐state operation of a MLC Fe‐FET at a gate voltage sweep of ±18 V with excellent data retention and endurance of each state of more than 104 s and 120 cycles, respectively.  相似文献   

4.
Organic non‐volatile resistive bistable diodes based on phase‐separated blends of ferroelectric and semiconducting polymers are fabricated. The polarization field of the ferroelectric modulates the injection barrier at the semiconductor–electrode contact and, hence, the resistance of the comprising diodes. Comparison between the on‐ and off‐current of the switching diodes, with the current measured for semiconductor‐only diodes reveals that the switching occurs between bulk‐limited, i.e., space‐charge‐limited, and injection‐limited current transport. By deliberately varying the HOMO energy of the semiconductor and the work‐function of the metal electrode, it is demonstrated that injection barriers up to 1.6 eV can be surmounted by the ferroelectric polarization yielding on/off current modulations of more than five orders of magnitude. The exponential dependence of the current modulation with a slope of 0.25 eV/decade is rationalized by the magnitude of the injection barrier.  相似文献   

5.
The processing of solution‐based binary blends of the ferroelectric random copolymer poly(vinylidene fluoride‐trifluoroethylene) P(VDF‐TrFE) and the semiconducting polymer poly(9,9‐dioctylfluorenyl‐2,7‐diyl) (PFO) applied by spin‐coating and wire‐bar coating is investigated. By systematic variation of blend composition, solvent, and deposition temperature it is shown that much smoother blend films can be obtained than reported thus far. At a low PFO:P(VDF‐TrFE) ratio the blend film consists of disk‐shaped PFO domains embedded in a P(VDF‐TrFE) matrix, while an inverted structure is obtained in case the P(VDF‐TrFE) is the minority component. The microstructure of the phase separated blend films is self‐affine. From this observation and from the domain size distribution it is concluded that the phase separation occurs via spinodal decomposition, irrespectively of blend ratio. This is explained by the strong incompatibility of the two polymers expressed by the binary phase diagram, as constructed from thermal analysis data. Time resolved numerical simulation of the microstructure evolution during de‐mixing qualitatively shows how an elevated deposition temperature has a smoothening effect as a result of the reduction of the repulsion between the blend components. The small roughness allowed the realization of bistable rectifying diodes that switch at low voltages with a yield of 100%. This indicates that memory characteristics can be tailored from the outset while processing parameters can be adjusted according to the phase behavior of the active components.  相似文献   

6.
The polymer phase separation of P(VDF‐TrFE):F8BT blends is studied in detail. Its morphology is key to the operation and performance of memory diodes. In this study, it is demonstrated that it is possible to direct the semiconducting domains of a phase‐separating mixture of P(VDF‐TrFE) and F8BT in a thin film into a highly ordered 2D lattice by means of surface directed phase separation. Numerical simulation of the surface‐controlled de‐mixing process provides insight in the ability of the substrate pattern to direct the phase separation, and hence the regularity of the domain pattern in the final dry blend layer. By optimizing the ratio of the blend components, the number of electrically active semiconductor domains is maximized. Pattern replication on a cm‐scale is achieved, and improved functional device performance is demonstrated in the form of a 10‐fold increase of the ON‐current and a sixfold increase in current modulation. This approach therefore provides a simple and scalable means to higher density integration, the ultimate target being a single semiconducting domain per memory cell.  相似文献   

7.
High‐performance organic transistor memory elements with donor‐polymer blends as buffer layers are presented. These organic memory transistors have steep flanks of hysteresis with an ON/OFF memory ratio of up to 2 × 104, and a retention time in excess of 24 h. Inexpensive materials such as poly(methyl methacrylate), ferrocene and copper phthalocyanine are used for the device fabrication, providing a convenient approach of producing organic memory transistors at low cost and high efficiency.  相似文献   

8.
An efficient ferroelectric‐enhanced side‐gated single CdS nanowire (NW) ultraviolet (UV) photodetector at room temperature is demonstrated. With the ultrahigh electrostatic field from polarization of ferroelectric polymer, the depletion of the intrinsic carriers in the CdS NW channel is achieved, which significantly reduces the dark current and increases the sensitivity of the UV photodetector even after the gate voltage is removed. Meanwhile, the low frequency noise current power of the device reaches as low as 4.6 × 10?28 A2 at a source‐drain voltage Vds = 1 V. The single CdS NW UV photodetector exhibits high photoconductive gain of 8.6 × 105, responsivity of 2.6 × 105 A W?1, and specific detectivity (D*) of 2.3 × 1016 Jones at a low power density of 0.01 mW cm?2 for λ = 375 nm. In addition, the spatially resolved scanning photocurrent mapping across the device shows strong photocurrent signals near the metal contacts. This is promising for the design of a controllable, high‐performance, and low power consumption ultraviolet photodetector.  相似文献   

9.
Here, a facile route to fabricate thin ferroelectric poly(vinylidene fluoride) (PVDF)/poly(methylmethacrylate) (PMMA) blend films with very low surface roughness based on spin‐coating and subsequent melt‐quenching is described. Amorphous PMMA in a blend film effectively retards the rapid crystallization of PVDF upon quenching, giving rise to a thin and flat ferroelectric film with nanometer scale β‐type PVDF crystals. The still, flat interfaces of the blend film with metal electrode and/or an organic semi‐conducting channel layer enable fabrication of a highly reliable ferroelectric capacitor and transistor memory unit operating at voltages as low as 15 V. For instance, with a TIPS‐pentacene single crystal as an active semi‐conducting layer, a flexible ferroelectric field effect transistor shows a clockwise I–V hysteresis with a drain current bistability of 103 and data retention time of more than 15 h at ±15 V gate voltage. Furthermore, the robust interfacial homogeneity of the ferroelectric film is highly beneficial for transfer printing in which arrays of metal/ferroelectric/metal micro‐capacitors are developed over a large area with well defined edge sharpness.  相似文献   

10.
The ability to control organic‐organic interfaces in conjugated polymer blends is critical for further device improvement. Here, we control the phase separation in blends of poly(9,9‐di‐n‐octylfluorene‐alt‐benzothiadiazole) (F8BT) and poly(9,9‐di‐n‐octylfluorene‐alt‐(1,4‐phenylene‐((4‐sec‐butylphenyl)imino)‐1,4‐phenylene) (TFB) via chemical modification of the substrate by microcontact printing of octenyltrichlorosilane molecules. The lateral phase‐separated structures in the blend film closely replicate the underlying micrometer‐scale chemical pattern. We found nanometer‐scale vertical segregation of the polymers within both lateral domains, with regions closer to the substrate being substantially pure phases of either polymer. Such phase separation has important implications for the performance of light‐emitting diodes fabricated using these patterned blend films. In the absence of a continuous TFB wetting layer at the substrate interface, as typically formed in spin‐coated blend films, charge carrier injection is confined in the well‐defined TFB‐rich domains. This confinement leads to high electroluminescence efficiency, whereas the overall reduction in the roughness of the patterned blend film results in slower decay of device efficiency at high voltages. In addition, the amount of surface out‐coupling of light in the forward direction observed in these blend devices is found to be strongly correlated to the distribution of periodicity of the phase‐separated structures in the active layer.  相似文献   

11.
Flexible multi‐colored electrochromic and volatile memory devices are fabricated from a solution‐processable electroactive aromatic polyimide with starburst triarylamine unit. The polyimide prepared by the chemical imidization was highly soluble in many organic solvents and showed useful levels of thermal stability associated with high glass‐transition temperatures. The polyimide with strong electron‐donating capability possesses static random access memory behavior and longer retention time than other 6FDA‐based polyimides. The differences of the highest‐occupied and lowest unoccupied molecular orbital levels among these polyimides with different electron‐donating moieties are investigated and the effect on the memory behavior is demonstrated. The polymer film shows reversible electrochemical oxidation and electrochromism with high contrast ratio both in the visible range and near‐infrared region, which also exhibits high coloration efficiency, low switching time, and the outstanding stability for long‐term electrochromic operation. The highly stable electrochromism and interesting volatile memory performance are promising properties for the practical flexible electronics applications in the future.  相似文献   

12.
This work reports a resistive switching effect observed at rectifying Pt/Bi1–δFeO3 interfaces and the impact of Bi deficiencies on its characteristics. Since Bi deficiencies provide hole carriers in BiFeO3, Bi‐deficient Bi1–δFeO3 films act as a p‐type semiconductor. As the Bi deficiency increased, a leakage current at Pt/Bi1–δFeO3 interfaces tended to increase, and finally, rectifying and hysteretic current–voltage (IV) characteristics were observed. In IV characteristics measured at a voltage‐sweep frequency of 1 kHz, positive and negative current peaks originating from ferroelectric displacement current were observed under forward and reverse bias prior to set and reset switching processes, respectively, suggesting that polarization reversal is involved in the resistive switching effect. The resistive switching measurements in a pulse‐voltage mode revealed that the switching speed and switching ratio can be improved by controlling the Bi deficiency. The resistive switching devices showed endurance of >105 cycles and data retention of >105 s at room temperature. Moreover, unlike conventional resistive switching devices made of metal oxides, no forming process is needed to obtain a stable resistive switching effect in the ferroelectric resistive switching devices. These results demonstrate promising prospects for application of the ferroelectric resistive switching effect at Pt/Bi1–δFeO3 interfaces to nonvolatile memory.  相似文献   

13.
Three acceptor–acceptor (A–A) type conjugated polymers based on isoindigo and naphthalene diimide/perylene diimide are designed and synthesized to study the effects of building blocks and alkyl chains on the polymer properties and performance of all‐polymer photoresponse devices. Variation of the building blocks and alkyl chains can influence the thermal, optical, and electrochemical properties of the polymers, as indicated by thermogravimetric analysis, differential scanning calorimetry, UV–vis, cyclic voltammetry, and density functional theory calculations. Based on the A–A type conjugated polymers, the most efficient all‐polymer photovoltaic cells are achieved with an efficiency of 2.68%, and the first all‐polymer photodetectors are constructed with high responsivity (0.12 A W?1) and detectivity (1.2 × 1012 Jones), comparable to those of the best fullerene based organic photodetectors and inorganic photodetectors. Photoluminescence spectra, charge transport properties, and morphology of blend films are investigated to elucidate the influence of polymeric structures on device performances. This contribution demonstrates a strategy of systematically tuning the polymeric structures to achieve high performance all‐polymer photoresponse devices.  相似文献   

14.
In this paper scanning near‐field microscopy is used to characterize polymer blends for photovoltaic applications, and fluorescence imaging and photoconductivity are combined to elucidate the spatial distribution and relative efficiency of current generation and photoluminescence in different domains of compositionally heterogeneous films. Focus is placed on a binary system consisting of poly[(9,9‐dioctylfluorene)‐alt‐benzothiadiazole] (F8BT) and poly[(9,9‐dioctylfluorene)‐alt‐(bis(N,N′‐(4‐butylphenyl))‐bis(N,N′‐phenyl‐1,4‐phenylenediamine))] (PFB), spun from xylene solutions, so as to obtain phase separation on micrometer and nanometer length scales. Protruding regions with diameters of about 5 μm in the topography image coincide with regions of high photocurrent (PC) and luminescence; these regions are identified as being F8BT‐rich. A general method to estimate the photoluminescence efficiency in the different domains of phase‐separated blends is proposed. As expected, lack of enhancement of the PC signal at the boundaries between protruding and lower‐lying phases indicate that these microscale boundaries play a small role in the charge generation by exciton splitting. This is consistent with the domains compositional inhomogeneity, and thus with finer phase separation within the domains. We also provide an analysis of the extent to which the metallized probe perturbs the near‐field photocurrent signal by integrating Poisson's equation. Finally, by using a Bethe–Bouwkamp model, the energy absorbed by the polymer film in the different regions is estimated.  相似文献   

15.
Ordering of semiconducting polymers in thin films from the nano to microscale is strongly correlated with charge transport properties as well as organic field‐effect transistor performance. This paper reports a method to control nano to microscale ordering of poly{[N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene)} (P(NDI2OD‐T2)) thin films by precisely regulating the solidification rate from the metastable state just before crystallization. The proposed simple but effective approach, kinetically controlled crystallization, achieves optimized P(NDI2OD‐T2) films with large polymer domains, long range ordered fibrillar structures, and molecular orientation preferable for electron transport leading to dramatic morphological changes in both polymer domain sizes at the micrometer scale and molecular packing structures at nanoscales. Structural changes significantly increase electron mobilities up to 3.43 ± 0.39 cm2 V?1 s?1 with high reliability, almost two orders of enhancement compared with devices from naturally dried films. Small contact resistance is also obtained for electron injection (0.13 MΩ cm), low activation energy (62.51 meV), and narrow density of states distribution for electron transport in optimized thin films. It is believed that this study offers important insight into the crystallization of conjugated polymers that can be broadly applied to optimize the morphology of semiconducting polymer films for solution processed organic electronic devices.  相似文献   

16.
Four soluble dialkylated tetrathienoacene ( TTAR) ‐based small molecular semiconductors featuring the combination of a TTAR central core, π‐conjugated spacers comprising bithiophene ( bT ) or thiophene ( T ), and with/without cyanoacrylate ( CA ) end‐capping moieties are synthesized and characterized. The molecule DbT‐TTAR exhibits a promising hole mobility up to 0.36 cm2 V?1 s?1 due to the enhanced crystallinity of the microribbon‐like films. Binary blends of the p‐type DbT‐TTAR and the n‐type dicyanomethylene substituted dithienothiophene‐quinoid ( DTTQ‐11 ) are investigated in terms of film morphology, microstructure, and organic field‐effect transistor (OFET) performance. The data indicate that as the DbT‐TTAR content in the blend film increases, the charge transport characteristics vary from unipolar (electron‐only) to ambipolar and then back to unipolar (hole‐only). With a 1:1 weight ratio of DbT‐TTAR DTTQ‐11 in the blend, well‐defined pathways for both charge carriers are achieved and resulted in ambipolar transport with high hole and electron mobilities of 0.83 and 0.37 cm2 V?1 s?1, respectively. This study provides a viable way for tuning microstructure and charge carrier transport in small molecules and their blends to achieve high‐performance solution‐processable OFETs.  相似文献   

17.
Redox‐active conjugated microporous polymers (RCMPs) polymerized by conventional methods are commonly obtained as irregular insoluble solid particles making the electrode processing difficult. In this work, the synthesis of RCMP based on anthraquinone moieties (IEP‐11) is developed via a two‐step pathway combining miniemulsion and solvothermal techniques that results in polymer nanostructures that are much easier to disperse in solvents facilitating the fabrication of electrodes. Interestingly, this synthetic approach is also found to have an important impact on the inherent morphology of IEP‐11 that exhibits a dual porosity combining micro and mesopores with a specific surface area as high as 2200 m2 g?1, which is one of the highest values reported for RCMPs. Moreover, the compactness of the electrodes is also improved, the resulting electrodes have triple the density than those obtained with conventional methods. Consequently, when these electrodes are tested as cathodes in Li‐ion battery, they deliver high gravimetric capacities (≈100 mAh g?1) and extraordinary rate capability keeping 76% of discharge capacity when charged–discharged in only 12 min (@5 C). Moreover, the insoluble and robust conjugated porous structure provides IEP‐11‐E12 with an unprecedented cycling stability retain ≈90% and ≈60% of its initial capacity after 5000 (@2 C) and 80 000 cycles (@30 C), respectively.  相似文献   

18.
The growth mechanism of soluble acene is highly dependent on the remaining residual solvent following solution processing. The relationship between the amount of residual solvent and the growth modes of a prototypical soluble acene, 6,13‐bis(triisopropylsilylethynyl)pentacene (TIPS‐pentacene) are examined under spin casting TIPS‐pentacene/insulating polymer blends. Changing spin time of the blend solution allows to control the amount of residual solvent, which significantly determines the growth modes of TIPS‐pentacene vertically segregated onto the insulating polymer. In situ observation of crystal growth reveals that excess residual solvent in short spin time induces a convective flow in a drying droplet, thereby resulting in 1D growth of TIPS‐pentacene crystals. On the other hand, optimal amount of residual solvent in a moderate spin time results in 2D growth of TIPS‐pentacene crystals. The well‐developed 2D spherulites allow for higher field‐effect mobility than that of the 1D crystals because of the higher perfectness and coverage of TIPS‐pentacene crystals. The use of other types of soluble acene and insulating polymer only changes the kinetics of crystallization, while the transition of growth mode from 1D to 2D is still observed. This general growth mechanism facilitates the understanding of crystallization behavior of soluble acene for the development of high‐performance organic transistors.  相似文献   

19.
Inkjet printing of semiconducting polymers is desirable for realizing low‐cost, large‐area printed electronics. However, sequential inkjet printing methods often suffer from nozzle clogging because the solubility of semiconducting polymers in organic solvents is limited. Here, it is demonstrated that the addition of an insulating polymer to a semiconducting polymer ink greatly enhances the solubility and stability of the ink, leading to the stable ejection of ink droplets. This bicomponent blend comprising a liquid‐crystalline semiconducting copolymer, poly(didodecylquaterthiophene‐alt‐didodecylbithiazole) (PQTBTz‐C12), and an insulating commodity polymer, polystyrene, is extremely useful as a semiconducting layer in organic field‐effect transistors (OFETs), providing fine control over the phase‐separated morphology and structure of the inkjet‐printed film. Tailoring the solubility‐induced phase separation of the two components leads to a bilayer structure consisting of a polystyrene layer on the top and a highly crystalline PQTBTz‐C12 layer on the bottom. The blend film is used as the semiconducting layer in OFETs, reducing the semiconductor content to several tens of pictograms in a single device without degrading the device performance. Furthermore, OFETs based on the PQTBTz‐C12/polystyrene film exhibit much greater environmental and electrical stabilities compared to the films prepared from homo PQTBTz‐C12, mainly due to the self‐encapsulated structure of the blend film.  相似文献   

20.
An originally designed catalytic and shape‐memory polymer reactor is reported. This reactor is made of a unique shape‐switchable polymer composed of a thermosensitive control layer and an inert substrate layer. With the inert substrate layer made of poly(acrylamide), the thermosensitive control layer consists of nickel nanoparticles and a smart polymer composite of poly(1‐vinylimidazole) (PVIm) and poly(acrylic acid) (PAAc) that exhibit switchable domains. The self‐healing and dissociation between PVIm and PAAc induce convex/concave‐switchable shapes in the resulting reactor, which cause tunable access to the encapsulated metal nanoparticles. In this way, this reactor demonstrates tunable catalytic ability. Unlike reported smart polymer reactors exhibiting tunable catalysis usually due to the thermal phase transition of poly(N‐isopropylacrylamide) (PNIPAm), this novel reactor adopts the shape‐switchable strategy for tunable catalysis. This novel design suggests a new protocol for the development of smart catalytic reactors, which opens new opportunities for controlled chemical processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号