首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Given that the performance of a lithium–oxygen battery (LOB) is determined by the electrochemical reactions occurring on the cathode, the development of advanced cathode nanoarchitectures is of great importance for the realization of high‐energy‐density, reversible LOBs. Herein, a robust cathode design is proposed for LOBs based on a dual‐phasic carbon nanoarchitecture. The cathode is composed of an interwoven network of porous metal–organic framework (MOF) derived carbon (MOF‐C) and conductive carbon nanotubes (CNTs). The dual‐phasic nanoarchitecture incorporates the advantages of both components: MOF‐C provides a large surface area for the oxygen reactions and a large pore volume for Li2O2 storage, and CNTs provide facile pathways for electron and O2 transport as well as additional void spaces for Li2O2 accommodation. It is demonstrated that the synergistic nanoarchitecturing of the dual‐phasic MOF‐C/CNT material results in promising electrochemical performance of LOBs, as evidenced by a high discharge capacity of ≈10 050 mAh g?1 and a stable cycling performance over 75 cycles.  相似文献   

2.
One of the formidable challenges facing aprotic lithium‐oxygen (Li‐O2) batteries is the high charge overpotential, which induces the formation of byproducts, loss in efficiency, and poor cycling performance. Herein, the synthesis of the ultrasmall Pt‐coated hollow graphene nanocages as cathode in Li‐O2 batteries is reported. The charge voltage plateau can reduce to 3.2 V at the current density of 100 mA g?1, even maintain below 3.5 V when the current density increased to 500 mA g?1. The unique hollow graphene nanocages matrix can not only provide numerous nanoscale tri‐phase regions as active sites for efficient oxygen reduction, but also offer sufficient amount of mesoscale pores for rapid oxygen diffusion. Furthermore, with strong atomic‐level oxygen absorption into its subsurface, ultrasmall Pt catalytically serves as the nucleation site for Li2O2 growth. The Li2O2 is subsequently induced into a favorable form with small size and amorphous state, decomposed more easily during recharge. Meanwhile, the conductive hollow graphene substrate can enhance the catalytic activity of noble metal Pt catalysts due to the graphene‐metal interfacial interaction. Benefiting from the above synergistic effects between the hollow graphene nanocages and the nanosized Pt catalysts, the ultrasmall Pt‐decorated graphene nanocage cathode exhibits enhanced electrochemical performances.  相似文献   

3.
Cathode design is indispensable for building Li‐O2 batteries with long cycle life. A composite of carbon‐wrapped Mo2C nanoparticles and carbon nanotubes is prepared on Ni foam by direct hydrolysis and carbonization of a gel composed of ammonium heptamolybdate tetrahydrate and hydroquinone resin. The Mo2C nanoparticles with well‐controlled particle size act as a highly active oxygen reduction reactions/oxygen evolution reactions (ORR/OER) catalyst. The carbon coating can prevent the aggregation of the Mo2C nanoparticles. The even distribution of Mo2C nanoparticles results in the homogenous formation of discharge products. The skeleton of porous carbon with carbon nanotubes protrudes from the composite, resulting in extra voids when applied as a cathode for Li‐O2 batteries. The batteries deliver a high discharge capacity of ≈10 400 mAh g?1 and a low average charge voltage of ≈4.0 V at 200 mA g?1. With a cutoff capacity of 1000 mAh g?1, the Li‐O2 batteries exhibit excellent charge–discharge cycling stability for over 300 cycles. The average potential polarization of discharge/charge gaps is only ≈0.9 V, demonstrating the high ORR and OER activities of these Mo2C nanoparticles. The excellent cycling stability and low potential polarization provide new insights into the design of highly reversible and efficient cathode materials for Li‐O2 batteries.  相似文献   

4.
Owing to their extremely high energy density, Li‐O2 batteries have attained increasing attention in recent studies. However, deposition of the discharge product, insulating Li2O2, is known to seriously limit the electrochemical performance of Li‐O2 batteries. While extensive studies have focused on relieving electrode deactivation by controlling Li2O2 growth, no permanent or effective mechanism is delivered. Here, a unique design comprising a catalytic cathode constructed by cracked carbon submicron tube (CST) arrays decorated with Au nanoparticles on inner walls is proposed. The introduction of Au nanoparticles not only improves electrode conductivity but also provides catalytic sites, guiding conformal growth of thin‐layered Li2O2 inside the cracked CST. Density functional theory calculations support that Au decoration on CST favors the conformal growth of Li2O2 on inner tubular walls. This growth behavior of Li2O2 renders easy decomposition of Li2O2, prevents carbon tube electrode from full, rapid deactivation, and preserves the free space for reactants transport. Li‐O2 cells with Au@CST exhibit good rate capability (1208 mAh g–1 at a high current density of 1000 mA g–1) and long cycle life (112 cycles at a current density of 400 mA g–1 with a limited capacity of 500 mAh g–1).  相似文献   

5.
Here first a 2D dual‐metal (Co/Zn) and leaf‐like zeolitic imidazolate framework (ZIF‐L)‐pyrolysis approach is reported for the low‐cost and facile preparation of Co nanoparticles encapsulated into nitrogen‐doped carbon nanotubes (Co‐N‐CNTs). Importantly, the reasonable Co/Zn molar ratio in the ZIF‐L is the key to the emergence of the encapsulated microstructure. Specifically, high‐dispersed cobalt nanoparticles are fully encapsulated in the tips of N‐CNTs, leading to the full formation of highly active Co–N–C moieties for oxygen reduction and evolution reactions (ORR and OER). As a result, the obtained Co‐N‐CNTs present superior electrocatalytic activity and stability toward ORR and OER over the commercial Pt/C and IrO2 as well as most reported metal‐organic‐framework‐derived catalysts, respectively. Remarkably, as bifunctional air electrodes of the Zn–air battery, it also shows extraordinary charge–discharge performance. The present concept will provide a guideline for screening novel 2D metal‐organic frameworks as precursors to synthesize advanced multifunctional nanomaterials for cross‐cutting applications.  相似文献   

6.
Hierarchically structured nitrogen‐doped carbon nanotube (NCNT) composites, with copper (Cu) nanoparticles embedded uniformly within the nanotube walls and cobalt oxide (CoxOy) nanoparticles decorated on the nanotube surfaces, are fabricated via a combinational process. This process involves the growth of Cu embedded CNTs by low‐ and high‐temperature chemical vapor deposition, post‐treatment with ammonia for nitrogen doping of these CNTs, precipitation‐assisted separation of NCNTs from cobalt nitrate aqueous solution, and finally thermal annealing for CoxOy decoration. Theoretical calculations show that interaction of Cu nanoparticles with CNT walls can effectively decrease the work function of CNT surfaces and improve adsorption of hydroxyl ions onto the CNT surfaces. Thus, the activities of the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) are significantly enhanced. Because of this benefit, further nitrogen doping, and synergistic coupling between CoxOy and NCNTs, Cu@NCNT/CoxOy composites exhibit ORR activity comparable to that of commercial Pt/C catalysts and high OER activity (outperforming that of IrO2 catalysts). More importantly, the composites display superior long‐term stability for both ORR and OER. This simple but general synthesis protocol can be extended to design and synthesis of other metal/metal oxide systems for fabrication of high‐performance carbon‐based electrocatalysts with multifunctional catalytic activities.  相似文献   

7.
Carbon based materials as one promising cathode to accommodate the insoluble and insulating discharge products (Li2O2) for lithium oxygen (Li‐O2) batteries have attracted great attention due to their large energy density store ability compared with the other carbon‐free cathodes. However, the side reaction occurring at carbon/Li2O2 interfaces hinders their large‐scale application in Li‐O2 batteries. Herein, a simple and cost‐effective strategy is developed for the growth of core‐shell‐like Co/CoO nanoparticles on 3D graphene‐wrapped carbon foam using 3D melamine foam as the initial backbone. This unique 3D hierarchical carbonized melamine foam‐graphene‐Co/CoO hybrid (CMF‐G‐Co/CoO) with a continuous conductive network and elastic properties is used as binder‐free oxygen electrode for Li‐O2 batteries. Electrochemical and structural measurements show that a synergistic effect is observed between Co/CoO and graphene, where Li2O2 grows on the Co/CoO surfaces instead of the carbon surfaces at the initial discharge state (500 mAh ), indicating the reduced carbon/Li2O2 interfaces and alleviative side reactions during the electrochemical process. Importantly, the CMF‐G‐Co/CoO electrode can achieve greatly improved cycle life over the electrode without aid of the Co/CoO. Furthermore, it delivers a large capacity of ≈7800 mAh and outstanding rate capability, exhibiting the great potential for the application in Li‐O2 batteries.  相似文献   

8.
Lithium sulfide (Li2S) has attracted increasing attention as a promising cathode because of its compatibility with more practical lithium‐free anode materials and its high specific capacity. However, it is still a challenge to develop Li2S cathodes with low electrochemical overpotential, high capacity and reversibility, and good rate performance. This work designs and fabricates a practical Li2S cathode composed of Li2S/few‐walled carbon nanotubes@reduced graphene oxide nanobundle forest (Li2S/FWNTs@rGO NBF). Hierarchical nanostructures are obtained by annealing the Li2SO4/FWNTs@GO NBF, which is prepared by a facile and scalable solution‐based self‐assembly method. Systematic characterizations reveal that in this unique NBF nanostructure, FWNTs act as axial shafts to direct the structure, Li2S serves as the internal active material, and GO sheets provide an external coating to minimize the direct contact of Li2S with the electrolyte. When used as a cathode, the Li2S/FWNTs@rGO NBF achieve a high capacity of 868 mAh g?1Li2S at 0.2C after 300 cycles and an outstanding rate performance of 433 mAh g?1Li2S even at 10C, suggesting that this Li2S cathode is a promising candidate for ultrafast charge/discharge applications. The design and synthetic strategies outlined here can be readily applied to the processing of other novel functional materials to obtain a much wider range of applications.  相似文献   

9.
Herein, high‐content N‐doped carbon nanotube (CNT) microspheres (HNCMs) are successfully synthesized through simple spray drying and one‐step pyrolysis. HNCM possesses a hierarchically porous architecture and high‐content N‐doping. In particular, HNCM800 (HNCM pyrolyzed at 800 °C) shows high nitrogen content of 12.43 at%. The porous structure derived from well‐interconnected CNTs not only offers a highly conductive network and blocks diffusion of soluble lithium polysulfides (LiPSs) in physical adsorption, but also allows sufficient sulfur infiltration. The incorporation of N‐rich CNTs provides strong chemical immobilization for LiPSs. As a sulfur host for lithium–sulfur batteries, good rate capability and high cycling stability is achieved for HNCM/S cathodes. Particularly, the HNCM800/S cathode delivers a high capacity of 804 mA h g?1 at 0.5 C after 1000 cycles corresponding to low fading rate (FR) of only 0.011% per cycle. Remarkably, the cathode with high sulfur loading of 6 mg cm?2 still maintains high cyclic stability (capacity of 555 mA h g?1 after 1000 cycles, FR 0.038%). Additionally, CNT/Co3O4 microspheres are obtained by the oxidation of CNTs/Co in the air. The as‐prepared CNT/Co3O4 microspheres are employed as an anode for lithium‐ion batteries and present excellent cycling performance.  相似文献   

10.
Li‐S batteries can potentially deliver high energy density and power, but polysulfide shuttle and lithium dendrite formations on Li metal anode have been the major hurdle. The polysulfide shuttle becomes severe particularly when the areal loading of the active material (sulfur) is increased to deliver the high energy density and the charge/discharge current density is raised to deliver high power. This study reports a novel mechanochemical method to create trenches on the surface of carbon nanotubes (CNTs) in free‐standing 3D porous CNT sponges. Unique spiral trenches are created by pressures during the chemical treatment process, providing polysulfide‐philic surfaces for cathode and lithiophilic surfaces for anode. The Li‐S cells made from manufacturing‐friendly sulfur‐sandwiched cathodes and lithium‐infused anodes using the mechanochemically treated electrodes exhibit a strikingly high areal capacity as high as 13.3 mAh cm?2, which is only marginally reduced even with a tenfold increase in current density (16 mA cm?2), demonstrating both high “cell‐level” energy density and power. The outstanding performance can be attributed to the significantly improved reaction kinetics and lowered overpotentials coming from the reduced interfacial resistance and charge transfer resistance at both cathodes and anodes. The trench–wall CNT sponge simultaneously tackles the most critical problems on both the cathodes and anodes of Li‐S batteries, and this method can be utilized in designing new electrode materials for energy storage and beyond.  相似文献   

11.
Novel pyrenyl‐moieties‐decorated hyperbranched polyglycidol (pHBP) is synthesized and utilized for the functionalization of carbon nanotubes (CNTs) via a non‐covalent (non‐destructive) process. Mediated by a pHBP layer on the CNT sidewall, Au, Ag and Pt nanoparticles and uniform SiO2, GeO2 and TiO2 coatings are generated in situ and deposited onto the as‐prepared CNT/pHBP hybrids, forming versatile homogeneous CNT‐based nanohybrid sols. The coverage of metal nanoparticles and oxide coatings is controllable simply by changing the employed amount of precursors. This easy synthetic strategy provides a general and convenient route to efficiently assemble a wide range of metal nanoparticles and inorganic oxide components on the sidewalls of CNTs, and enables the construction of heterogeneous nanostructures with novel functionalities. As a means of demonstrating the versatility of the fabricated hybrid materials, the catalytic function of CNT/pHBP/Pt hybrids towards the reduction of 4‐nitrophenol and the incorporation of dye molecules into the CNT/pHBP/SiO2 matrix resulting in fluorescent nanofibers are investigated.  相似文献   

12.
Aprotic Li–O2 batteries are promising candidates for next‐generation energy storage technologies owing to their high theoretical energy densities. However, their practically achievable specific energy is largely limited by the need for porous conducting matrices as cathode support and the passivation of cathode surface by the insulating Li2O2 product. Herein, a self‐standing and hierarchically porous carbon framework is reported with Co nanoparticles embedded within developed by 3D‐printing of cobalt‐based metal–organic framework (Co‐MOF) using an extrusion‐based printer, followed by appropriate annealing. The novel self‐standing framework possesses good conductivity and necessary mechanical stability, so that it can act as a porous conducting matrix. Moreover, the porous framework consists of abundant micrometer‐sized pores formed between Co‐MOF‐derived carbon flakes and meso‐ and micropores formed within the flakes, which together significantly benefit the efficient deposition of Li2O2 particles and facilitate their decomposition due to the confinement of insulating Li2O2 within the pores and the presence of Co electrocatalysts. Therefore, the self‐standing porous architecture significantly enhances the cell's practical specific energy, achieving a high value of 798 Wh kg?1cell. This study provides an effective approach to increase the practical specific energy for Li–O2 batteries by constructing 3D‐printed framework cathodes.  相似文献   

13.
Li4Ti5O12 typically shows a flat charge/discharge curve, which usually leads to difficulty in the voltage‐based state of charge (SOC) estimation. In this study, a facile quench‐assisted solid‐state method is used to prepare a highly crystalline binary Li4Ti5O12‐Li2Ti3O7 nanocomposite. While Li4Ti5O12 exhibits a sudden voltage rise/drop near the end of its charge/discharge curve, this binary nanocomposite has a tunable sloped voltage profile. The nanocomposite exhibits a unique lamellar morphology consisting of interconnected nanograins of ≈20 nm size with a hierarchical nanoporous structure, contributing to an enhanced rate capability with a capacity of 128 mA h g?1 at a high C‐rate of 10 C, and excellent cycling stability.  相似文献   

14.
An increase in the energy density of lithium‐ion batteries has long been a competitive advantage for advanced wireless devices and long‐driving electric vehicles. Li‐rich layered oxide, xLi2MnO3?(1?x)LiMn1?y?zNiyCozO2, is a promising high‐capacity cathode material for high‐energy batteries, whose capacity increases by increasing charge voltage to above 4.6 V versus Li. Li‐rich layered oxide cathode however suffers from a rapid capacity fade during the high‐voltage cycling because of instable cathode–electrolyte interface, and the occurrence of metal dissolution, particle cracking, and structural degradation, particularly, at elevated temperatures. Herein, this study reports the development of fluorinated polyimide as a novel high‐voltage binder, which mitigates the cathode degradation problems through superior binding ability to conventional polyvinylidenefluoride binder and the formation of robust surface structure at the cathode. A full‐cell consisting of fluorinated polyimide binder‐assisted Li‐rich layered oxide cathode and conventional electrolyte without any electrolyte additive exhibits significantly improved capacity retention to 89% at the 100th cycle and discharge capacity to 223–198 mA h g?1 even under the harsh condition of 55 °C and high charge voltage of 4.7 V, in contrast to a rapid performance fade of the cathode coated with polyvinylidenefluoride binder.  相似文献   

15.
Lithium–carbon dioxide (Li–CO2) batteries have received wide attention due to their high theoretical energy density and CO2 capture capability. However, this system still faces poor cycling performance and huge overpotential, which stems from the leakage/volatilization of liquid electrolyte and instability of the cathode. A gel polymer electrolyte (GPE)‐based Li–CO2 battery by using a novel pencil‐trace cathode and 0.0025 mol L?1 (M) binuclear cobalt phthalocyanine (Bi‐CoPc)‐containing GPE (Bi‐CoPc‐GPE) is developed here. The cathode, which is prepared by pencil drawing on carbon paper, is stable because of its typical limited‐layered graphitic structure without any binder. In addition, Bi‐CoPc‐GPE, which consists of polymer matrix filled with liquid electrolyte, exhibits excellent ion conductivity (0.86 mS cm?1), effective protection for Li anode, and superior leakproof property. Moreover, Bi‐CoPc acts as a redox mediator to promote the decomposition of discharge products at low charge potential. Interestingly, different from polymer‐shaped discharge products formed in liquid electrolyte–based Li–CO2 batteries, the morphology of products in Li–CO2 batteries using Bi‐CoPc‐GPE is film‐like. Hence, this polymer‐based Li–CO2 battery shows super‐high discharge capacity, low overpotential, and even steadily runs for 120 cycles. This study may pave a new way to develop high‐performance Li–CO2 batteries.  相似文献   

16.
Dendrimer‐encapsulated ruthenium oxide nanoparticles (DEN‐RuO2) have been used as catalysts in lithium‐oxygen (Li‐O2) batteries for the first time. The results obtained from ultraviolet‐visible spectroscopy, electron microscopy and X‐ray photoelectron spectroscopy show that the nanoparticles synthesized by the dendrimer template method are ruthenium oxide, not metallic ruthenium as reported by other groups. The DEN‐RuO2 significantly improves the cycling stability of Li‐O2 batteries with carbon electrodes and decreases the charging potential even at ten times less catalyst loading than those reported previously. The monodispersity, porosity, and large number of surface functionalities of the dendrimer template prevent the aggregation of the RuO2 nanoparticles, making their entire surface area available for catalysis. The potential of using DEN‐RuO2 as a standalone cathode material for Li‐O2 batteries is also explored.  相似文献   

17.
Several critical issues, such as the shuttling effect and the sluggish reaction kinetics, exist in the design of high‐performance lithium–sulfur (Li‐S) batteries. Here, it is reported that nitrogen doping can simultaneously and significantly improve both the immobilization and catalyzation effects of Co9S8 nanoparticles in Li‐S batteries. Combining the theoretical calculations with experimental investigations, it is revealed that nitrogen atoms can increase the binding energies between LiPSs and Co9S8, and as well as alleviate the sluggish kinetics of Li‐S chemistry in the Li2S6 cathode. The same effects are also observed when adding N‐Co9S8 nanoparticles into the commercial Li2S cathode (which has various intrinsic advantages, but unfortunately a high overpotential). A remarkable improvement in the battery performances in both cases is observed. The work brings heteroatom‐doped Co9S8 to the attention of designing high‐performance Li‐S batteries. A fundamental understanding of the inhibition of LiPSs shuttle and the catalytic effect of Li2S in the newly developed system may encourage more effort along this interesting direction.  相似文献   

18.
Carbon nanofibers produced by hydrothermal carbonization display remarkable reactivity and the capability for in situ loading with very fine noble‐metal nanoparticles of metals such as Pd, Pt, and Au. Large quantities of uniform carbon nanofibers embedded/confined with various kinds of noble‐metal nanoparticles can be easily prepared, resulting in the formation of the so‐called uniform and well‐defined “hybrid fleece” structures. In addition, a general method has been developed to synthesize uniform silica nanotubes embedded/confined with noble‐metal nanoparticles by using the “hybrid fleece” consisting of carbon nanofibers loaded with noble‐metal nanoparticles as a template. To the best of our knowledge, the filling of silica nanotubes with a dense population of noble‐metal nanoparticles has not been demonstrated so far. These hybrid carbon structures embedded with noble‐metal nanoparticles in a heterogeneous “fleece” geometry serve as excellent catalysts for a model reaction involving the conversion of CO to CO2 at low temperatures.  相似文献   

19.
Self‐standing electrodes are the key to realize flexible Li‐ion batteries. However, fabrication of self‐standing cathodes is still a major challenge. In this work, porous LiCoO2 nanosheet arrays are grown on Au‐coated stainless steel (Au/SS) substrates via a facile “hydrothermal lithiation” method using Co3O4 nanosheet arrays as the template followed by quick annealing in air. The binder‐free and self‐standing LiCoO2 nanosheet arrays represent the 3D cathode and exhibit superior rate capability and cycling stability. In specific, the LiCoO2 nanosheet array electrode can deliver a high reversible capacity of 104.6 mA h g?1 at 10 C rate and achieve a capacity retention of 81.8% at 0.1 C rate after 1000 cycles. By coupling with Li4Ti5O12 nanosheet arrays as anode, an all‐nanosheet array based LiCoO2//Li4Ti5O12 flexible Li‐ion battery is constructed. Benefiting from the 3D nanoarchitectures for both cathode and anode, the flexible LiCoO2//Li4Ti5O12 battery can deliver large specific reversible capacities of 130.7 mA h g?1 at 0.1 C rate and 85.3 mA h g?1 at 10 C rate (based on the weight of cathode material). The full cell device also exhibits good cycling stability with 80.5% capacity retention after 1000 cycles at 0.1 C rate, making it promising for the application in flexible Li‐ion batteries.  相似文献   

20.
The rechargeable Li–CO2 battery is a novel and promising energy storage system with the capability of CO2 capture due to the reversible reaction between lithium ions and carbon dioxide. Carbon materials as the cathode, however, limit both the cycling performance and the energy efficiency of the rechargeable Li–CO2 battery, due to the insulating Li2CO3 formed in the discharge process, which is difficult to decompose in the charge process. Here, a Mo2C/carbon nanotube composite material is developed as the cathode for the rechargeable Li–CO2 battery and can achieve high energy efficiency (77%) and improved cycling performance (40 cycles). A related mechanism is proposed that Mo2C can stabilize the intermediate reduction product of CO2 on discharge, thus preventing the formation of insulating Li2CO3. In contrast to insulating Li2CO3, this amorphous Li2C2O4‐Mo2C discharge product can be decomposed below 3.5 V on charge. The introduction of Mo2C provides an effective solution to the problem of low round‐trip efficiency in the Li–CO2 battery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号